Update to Remote Pilot Test
Remote Pilot Test Prep 2019

With the following changes, ASA's *Remote Pilot Test Prep 2019* provides complete preparation for the FAA Remote Pilot Unmanned Aircraft General — Small (UAG) and Unmanned General — Recurrent (UGR) Knowledge Exams. These tests continue to reference the *Airman Knowledge Testing Supplement for Sport Pilot, Recreational Pilot, Remote Pilot and Private Pilot (FAA-CT-8080-2H)*. Familiarize yourself with these figures, including “Legend 1: Sectional Aeronautical Chart.” The *FAA Remote Pilot Study Guide (FAA-G-8082-22)* will also be helpful in preparation for your test.

Remote pilots must maintain currency per 14 CFR §107.65. An FAA Knowledge Exam is available to meet this requirement. Initial remote pilot applicants should study the questions tagged “ALL” and renewing remote pilot applicants should study the questions tagged “UGR.”

About the Test Changes
The FAA exams are “closed tests” which means the exact database of questions is not available to the public. However, each test cycle the FAA provides a *What’s New* document, which identifies subjects that have been removed or added to a test. This document also includes pertinent information to ensure training and testing remains correlated, which in turn promotes a reliable certification system.

The question and answer choices in this book provide a comprehensive representation of FAA questions, derived from history and experience with the airman testing process. You might see similar although not exactly the same questions on your official FAA exam. Answer stems may be rearranged from the A, B, C order you see in this book. Therefore, be careful to fully understand the intent of each question and corresponding answer while studying, rather than memorize the A, B, C answer. You may be asked a question that has unfamiliar wording; studying and understanding the information in this book and the associated reference documents will give you the tools to answer all types of questions with confidence. We invite your feedback. After you take your official FAA exam, let us know how you did. Were you prepared? Did the ASA products meet your needs and exceed your expectations? We want to continue to improve these products to ensure applicants are prepared, and become safe remote pilots. Send feedback to: cfi@asa2fly.com

The next test change from the FAA is expected in January 2020.

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-14</td>
<td>1342</td>
<td>[B]</td>
<td>A new question is added to read: ALL, UGR 1342. 14 CFR Part 107 applies to A— public sUAS. B— civil sUAS. C— all sUAS. Part 107 only applies to civil small unmanned aircraft systems. (PLT443) — 14 CFR Part 107</td>
</tr>
<tr>
<td>1-14</td>
<td>1343</td>
<td>[C]</td>
<td>A new question is added to read: ALL, UGR 1343. A civil small unmanned aircraft operating under Part 107 is permitted to A— have dual registration in both the U.S. and a foreign country. B— operate only if possessing a U.S. registration certificate. C— operate if possessing either a U.S. registration or a foreign registration certificate. To operate under 14 CFR Part 107 within the United States, a civil sUAS must have an effective U.S. Certificate of Aircraft Registration issued to its owner, the second copy of the Aircraft Registration Application as described by 14 CFR §47.31(c), a Certificate of Aircraft Registration as provided by Part 48, or a registration certification issued under the laws of a foreign country. (PLT530) — 14 CFR Part 107</td>
</tr>
<tr>
<td>Question Number</td>
<td>Correct Answer</td>
<td>Explanation</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2-5 1069</td>
<td>This question has been removed. The Notices to Airman Publication (NTAP) is no longer covered on this test.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2-10 1228 | A new question is added to read:
ALL, UGR
1228. (Refer to Figure 25, Area 4.) What is the base of the Class B airspace over Hicks Airport (T67)?
A—3,000 feet AGL.
B—4,000 feet AGL.
C—4,000 feet MSL.

The base of the Class B airspace directly over Hicks airport is 4,000 feet MSL as indicated by the blue 110/40. Class B airspace is always shown on sectional charts in mean sea level (MSL). (PLT040) — FAA-H-8083-25 |
| 2-10 1340 | A new question is added to read:
ALL, UGR
1340. (Refer to Figure 23.) You have been hired to inspect a farm 3 miles west of Hilton Head Airport, in what type of airspace will you be operating?
A—Class G.
B—Class E.
C—Class C.

Hilton Head Airport is located in Class C airspace, from the surface up to 4,100 feet MSL (41/SFC) as shown by the solid magenta line encompassing the airport. The surface area Class C airspace extends 5 miles out from the center of the airport. (PLT161) — Sectional Chart Legend |
| 2-11 1284 | This question has been removed from the test. |
| 2-12 1301 | This question has been removed from the test. |
| 2-12 1338 | A new question is added to read:
ALL, UGR
1338. (Refer to Figure 78.) You are hired to inspect the railroad tracks from the town of Hinton, north of Sioux City, to the town of Winnebago. Will you require ATC authorization?
A—No, the flight will remain clear of controlled airspace.
B—Yes, your route of flight will pass through Class D airspace.
C—Yes, your route of flight will pass through Class E airspace.

The route of flight from Hinton south along the train tracks to Winnebago will pass right through the Class D airspace at Sioux Gateway Airport. (PLT064) — Sectional Chart Legend
Answer (A) is incorrect because you will fly through Class D airspace. Answer (C) is incorrect because the base of the Class E airspace along your route does not begin until 700 feet AGL as shown by the shaded magenta line. |
| 2-13 1341 | A new question is added to read:
ALL, UGR
1341. (Refer to Figure 52.) On what frequency can you expect to monitor air traffic in and around Lincoln Airport?
A—118.5
B—122.95
C—124.0

The communications section of the Chart Supplement U.S. for Lincoln Airport lists 118.5 as the tower frequency and the common traffic advisory frequency (CTAF) when the tower is closed. When operating in the vicinity of an airport, remote pilots are encouraged to monitor the tower frequency or CTAF. (PLT064) — AIM ¶4-1-9 |
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 2-14 | 1301 | [A] | A new question is added to read:
ALL, UGR
1301. (Refer to Figure 26, Area 3.) What type of flights are being conducted as indicated by IR678?
A— IFR military training route above 1,500 feet AGL.
B— VFR military training route above 1,500 feet AGL.
C— VFR military training route below 1,500 feet AGL.

IR678 identifies a military training route in a south-easterly direction depicted by the solid gray line and directional arrow. The IR represents an IFR route, while the following three-digit number indicates flights along this route are conducted above 1,500 feet AGL. Flights conducted at or below 1,500 feet AGL are identified by a four-digit number. VFR flights are indicated by a VR in place of the IR. (PLT161) — FAA-H-8083-25 |
| 2-18 | 1339 | [A] | A new question is added to read:
ALL, UGR
1339. (Refer to Figure 23.) What is the maximum altitude you are permitted to fly when inspecting the high-intensity towers 6 miles southwest of the Savannah/Hilton Head Airport (SAV)?
A— 1,945 feet MSL.
B— 1,945 feet AGL.
C— 1,545 feet MSL.

The high-intensity towers 6 miles southwest of the Savannah/Hilton Head Airport have a maximum elevation of 1,545 feet MSL (1,532 feet AGL). The regulations allow for an sUAS to be operated 400 feet above the structures uppermost limit when within a 400-foot radius of the structure: 1,545 + 400 = 1,945 feet MSL. (PLT064) — Sectional Chart Legend, 14 CFR §107.51
Answer (B) is incorrect because 1,945 feet indicates your maximum altitude in MSL. Answer (C) is incorrect because regulations permit you to operate 400 feet above the structures uppermost limit of 1,545 ft. MSL. |
| 2-18 | 1229 | [A] | A new question is added to read:
ALL, UGR
1229. (Refer to Figure 20, Area 2.) What should you be aware of when operating within the vicinity of Lake Drummond?
A— High intensity of air traffic.
B— Terrain obstruction.
C— Seaplane base.

The purple flag over Lake Drummond is indicating a VFR checkpoint which is used for aircraft to better identify their position to air traffic control or other aircraft in the area. You should expect an increased amount of converging air traffic in and around VFR checkpoints. (PLT064) — Sectional Chart Legend |
3-22	Chapter text		In the TAF example under item 10, on the first line insert “BKN090” between “P6SM” and “TEMPO”.
5-12	1228		This question has been removed from the test.
5-12	1229		This question has been removed from the test.
5-20	1284	[A]	A new question is added to read:
ALL, UGR
1284. A remote pilot-in-command and a visual observer define their roles and responsibilities prior to and during the operation of a small UA. This is a good use of
A— crew resource management.
B— authoritarian resource management.
C— single-pilot resource management.

Crew resource management (CRM) is the effective use of all available resources—human, hardware, and information—prior to and during flight to ensure a successful outcome of the operation. (PLT104) — FAA-H-8083-25 |
A new question is added to read:

ALL, UGR

1337. Aeronautical decision making (ADM) can be described as the pilot's ability for

A—sound judgment and good decision making.
B—making quick decisive actions.
C—interpreting dangerous situations.

ADM provides a structured, systematic approach to analyzing changes that may occur during a flight and how these changes might affect the safe outcome of that flight. The ADM process addresses all aspects of decision making for the crew and identifies the steps involved in good decision making. (PLT104) — FAA-H-8083-25