Update to Commercial Pilot Test
Commercial Pilot Test Prep 2019

With the following changes, ASA’s Commercial Test Prep 2019 provides complete preparation for the FAA Commercial Pilot and Military Competence Knowledge Exams. This test references the Airman Knowledge Testing Supplement for Commercial Pilot (FAA-CT-8080-1D).

About the Test Changes
The FAA exams are “closed tests” which means the exact database of questions is not available to the public. However, each test cycle the FAA provides a What’s New document, which identifies subjects that have been removed or added to a test. This document also includes pertinent information to ensure training and testing remains correlated, which in turn promotes a reliable certification system.

The question and answer choices in this book provide a comprehensive representation of FAA questions, derived from history and experience with the airman testing process. You might see similar although not exactly the same questions on your official FAA exam. Answer stems may be rearranged from the A, B, C order you see in this book. Therefore, be careful to fully understand the intent of each question and corresponding answer while studying, rather than memorize the A, B, C answer. You may be asked a question that has unfamiliar wording; studying and understanding the information in this book and the associated reference documents will give you the tools to answer all types of questions with confidence. We invite your feedback. After you take your official FAA exam, let us know how you did. Were you prepared? Did the ASA products meet your needs and exceed your expectations? We want to continue to improve these products to ensure applicants are prepared, and become safe pilots. Send feedback to: cfi@asa2fly.com

The next FAA test change is expected in January 2020.

Note to Applicants preparing for Military Competence exam: The Military Competence exam used to be aircraft-category specific (i.e. Airplane or Helicopter text). It is no longer category-specific and is now a single test (MCN) applicable to all Military Competence applicants. It is a 50-question exam testing knowledge on Regulations (Chapter 4) and Procedures and Airport Operations (Chapter 5). Applicants should study the questions tagged “MIL” found in Chapters 4 and 5. You can disregard the questions tagged MIL found in other chapters as these are no longer applicable to this test. You can learn more about this test in the Military Competence Airman Certification Standard (FAA-S-ACS-12).

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 4-7 | 5021-2 | [B] | A new question is added to read: MIL. 5021-2. May a pilot in the U.S. military use a current U.S. armed forces medical examination to exercise the privileges of an FAA Commercial Pilot Certificate?
A— Yes, the military examination may be used for any civilian flight operations.
B— No, the medical examination may not be used to exercise the privileges of an FAA Commercial Pilot Certificate.
C— No, a military medical examination may not be used for any civilian flight operations.
A U.S. Armed Forces medical examination may be substituted for an FAA medical certificate when the flight does not require higher than a third-class medical certificate and the flight is conducted as a domestic flight operation within U.S. airspace. A Commercial Pilot Certificate requires at minimum a second-class medical certificate. Therefore, an armed forces medical examination may not be used in place of an FAA medical. (PLT447) — 14 CFR §61.23 |
<p>| 4-11 | 5477 | [C] | The correct answer is changed to C. |</p>
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 4-19 | 5051-4 | [A] | A new question is added to read: ALL, MIL
5051-4. You are planning a trip and one of your passengers states that he prefers not to use his shoulder harness because it is uncomfortable. You should
A— explain that it is a mandatory requirement and that he use the shoulder harness during takeoff, landing, and movement on the surface.
B— allow him to use his seat belt for the entire trip without the shoulder harness.
C— allow him to use his seat belt for takeoff and landing and the shoulder harness while en route.
If installed, a shoulder harness must be worn during movement on the surface, takeoff, and landing. (PLT464) — 14 CFR §91.107 |
| 4-20 | 5060-1 | [C] | A new question is added to read: ALL, MIL
5060-1. Your transponder is inoperative. In order to enter Class B airspace, you must submit a request for a deviation from the
A— ATC facility no less than 24 hours before the proposed operation.
B— nearest FSDO 24 hours before the proposed operation.
C— controlling ATC facility at any time prior to entering the controlled airspace.
Mode C (encoding) transponders are required in Class A, B, and C airspace. (PLT161) — 14 CFR §91.215 |
| 4-23 | 5068-4 | [C] | A new question is added to read: AIR, MIL
5068-4. An aircraft’s operating limitations may be found in the
A— FAA-approved aircraft flight manual.
B— owner’s handbook published by the aircraft manufacturer.
C— aircraft flight manual, approved manual material, markings and placards, or any combination thereof.
As required by 14 CFR §21.5, no person may operate a U.S.-registered civil unless there is a current approved flight manual, approved manual material, markings and placards, or any combination thereof available in the aircraft. (PLT373) — 14 CFR §91.9 |
| 4-34 | 5535-1 | [C] | A new question is added to read: ALL, MIL
5535-1. Under what condition could an aircraft’s engine logbook show no previous operating history?
A— If the aircraft had been imported from a foreign country.
B— This would indicate an error by maintenance personnel.
C— After the aircraft’s engine has been rebuilt by the manufacturer.
The owner or operator may use a new maintenance record without previous operating history for an aircraft engine rebuilt by the manufacturer or by an agency approved by the manufacturer. (PLT425) — 14 CFR §91.421 |
| 5-11 | 5581-1 | [A] | A new question is added to read: ALL, MIL
5581-1. (Refer to Figure 52, area 6.) What is the purpose of the star that follows the CT-120.65 in the information box for Sacramento Mather Airport (MHR)?
A— It means that the control tower has limited hours of operation.
B— The airport has maintenance facilities.
C— There is a rotating beacon on the field.
The star symbol indicates that control tower operation is part time only. (PLT484) — Sectional Chart Legend |
A new question is added to read:
ALL, MIL
5999-4. (Refer to Figure.) The segmented circle indicates that the airport traffic is

A— left-hand for runway 36 and right-hand for runway 18.
B— left-hand for runway 18 and right-hand for runway 36.
C— right-hand for runway 9 and left-hand for runway 27.

The traffic pattern indicators on a segmented circle are used to indicate the direction of turns. The traffic pattern indicators, shown as extensions from the segmented circle, represent the base and final approach legs. (PLT141) — AIM ¶4-3-3

This question has been removed.

Replace the “Solution using the CX-3” with the following:

Solution using the CX-3:
1. Select Wind Correction from FLT menu and enter the given information:
 - True Airspeed (TAS) 80 KTS
 - True Course (TCrs) 0.075°
 - Wind Speed (Wspd) 20 KTS
 - Wind Direction (WDir) 175°
 Find a ground speed (GS) of 81 knots.
2. Select Ground Speed from the FLT menu and enter the given information:
 - Distance (Dist) 135 NM
 - Ground Speed (GS) 81 KTS
 Find a duration of 1 hour, 40 minutes.
3. Select Fuel from the FLT menu and enter the given information:
 - Duration (Dur) 1:40:00 HMS
 - Fuel Burn (Rate) 105 US GPH
 Find a total fuel consumed (Wt) of 175 pounds.
Replace steps 2–6 of the “Solution using the CX-3” with the following:

2. Determine your time of descent:
 \[
 \frac{\text{Distance}}{\text{Rate}} = \text{Time}
 \]

 \[
 7,800 \text{ feet} \div 600 \text{ feet/min} = 13 \text{ minutes}
 \]

3. Select Wind Correction from the FLT menu:
 - True Airspeed (TAS) 135 KTS
 - True Course (TCrs) 263°
 - Wind Speed (WSpd) 30 KTS
 - Wind Direction (WDir) 330 KTS
 Find a ground speed (GS) of 120 knots and a true heading (THdg) of 275°.

4. Subtract the variation of 7° east and add the deviation of 3° to get a compass heading of 271°.

5. Select Fuel from the FLT menu:
 - Duration (Dur) 13 MIN
 - Fuel Consumption (Rate) 11.5 US GPH
 Find a volume of total fuel consumed (Vol) of 2.49 U.S. gallons.

6. Select Ground Speed from the FLT menu:
 - Duration (DUR) 13 MIN
 - Ground Speed (GS) 120 KTS
 Find a distance (Dist) of 26 NM.

Replace the “Solution using the CX-3” with the following:

Solution using the CX-3:
Select Altitude from the FLT menu:
- Pressure Altitude (PAlt) 5,000 FT
- Temperature (OAT) 40°C
Find a density altitude (Dalt) of 8,846 feet.

Using an E6-B:
1. Convert 50°F to °C using the temperature conversion table at the bottom of the E6-B. The result is 10°C.
2. Refer to the right-hand “Density Altitude” window. Note that the scale above the window is labeled air temperature (°C). The scale inside the window itself is labeled pressure altitude (in thousands of feet). Rotate the disc and place the pressure altitude of 12,000 feet opposite an air temperature of 10°C. The density altitude shown in the density altitude window is 14,130 feet.

Using a CX-3:
1. From the FLT menu select Altitude.
2. Enter a PAlt of 12,000 FT and OAT of 50°F to get a DAlt of 14,134 FT or approximately 14,130 feet.

Using an E6-B:
1. Convert 30°F to °C using the temperature conversion table at the bottom of the E6-B. The result is -1°C.
2. Refer to the right-hand “Density Altitude” window. Note that the scale above the window is labeled air temperature (°C). The scale inside the window itself is labeled pressure altitude (in thousands of feet). Rotate the disc and place the pressure altitude of 6,000 feet opposite an air temperature of -1°C. The density altitude shown in the window is 5,500 feet.

Using a CX-3:
1. From the FLT menu select Altitude.
2. Enter a PAlt of 6,000 FT and OAT of 30°F to get a DAlt of 5,494 FT or approximately 5,500 feet.
Replace the “Solution using the CX-3” with the following:

Solution using the CX-3:
Select Wind Correction from the FLT menu:
Ground Speed (GS) 77 KTS
True Airspeed (TAS) 90 KTS
True Course (TCrs) 95°
True Heading (THdg) 75°

Find a wind direction (WDir) of 019° and wind speed (WSpd) of 31.7 knots.