Update to Commercial Pilot Test
Commercial Pilot Test Prep 2018

With the following changes, ASA’s Commercial Test Prep 2018 provides complete preparation for the FAA Commercial Pilot and Military Competence Knowledge Exams. This test now references the Airman Knowledge Testing Supplement for Commercial Pilot (FAA-CT-8080-1D). Be sure to download and get familiar with the new figures.

About the Test Changes
The FAA exams are “closed tests” which means the exact database of questions is not available to the public. However, each test cycle the FAA provides a What’s New document, which identifies subjects that have been removed or added to a test. This document also includes pertinent information to ensure training and testing remains correlated, which in turn promotes a reliable certification system.

The question and answer choices in this book provide a comprehensive representation of FAA questions, derived from history and experience with the airman testing process. You might see similar although not exactly the same questions on your official FAA exam. Answer stems may be rearranged from the A, B, C order you see in this book. Therefore, be careful to fully understand the intent of each question and corresponding answer while studying, rather than memorize the A, B, C answer. You may be asked a question that has unfamiliar wording; studying and understanding the information in this book and the associated reference documents will give you the tools to answer all types of questions with confidence. We invite your feedback. After you take your official FAA exam, let us know how you did. Were you prepared? Did the ASA products meet your needs and exceed your expectations? We want to continue to improve these products to ensure applicants are prepared, and become safe pilots. Send feedback to: cfi@asa2fly.com

The next FAA test change is expected in October 2018.

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>5220</td>
<td>[C]</td>
<td>The question and answer stems are changed to read:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5220. When transitioning from straight-and-level flight to a constant airspeed climb, the angle of attack and lift</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A— are increased and remain at a higher lift-to-weight ratio to maintain the climb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B— remain the same and maintain a steady state lift-to-weight ratio during the climb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C— are momentarily increased and lift returns to a steady state during the climb.</td>
</tr>
</tbody>
</table>

1-18	5210-1	[B]	A new question is added to read:
			AIR
			5210-1. To maintain a standard rate turn as the airspeed increases, the bank angle of the aircraft will need to
			A— remain constant.
			B— increase.
			C— decrease.

As airspeed is increased in a constant bank angle the rate of turn will decrease. For example, in a 30° bank at 100 knots your rate of turn will equal 6.5° degrees per second. If you maintain the 30° bank angle and increase speed to 150 knots your rate of turn will decrease to 4.4° degrees per second. Therefore, to maintain a standard rate turn of either 3° or 1.5° per second (high-speed aircraft), as airspeed is increased bank angle will need to be increased. (PLT118) — FAA-H-8083-25
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 1-21 | 5152-1 | [A] | A new question is added to read: AIR, GLI
5152-1. While executing a 60° level turn, your aircraft is at a load factor of 2.0. What does this mean?
A— The total load on the aircraft's structure is two times its weight.
B— The load factor is over the load limit.
C— The gust factor is two times the total load limit.
Load factor is the ratio between the total airload supported by the wing to the total weight of the airplane; i.e., the total airload supported by the wings divided by the total weight of the airplane. (PLT310) — FAA-H-8083-25 |
| 1-29 | 5752 | [C] | The question and answer stems are changed to read:
5752. Your flight takes you in the path of a large aircraft. In order to avoid the vortices you should fly
A— at the same altitude as the large aircraft.
B— below the altitude of the large aircraft.
C— above the flight path of the large aircraft. |
| 2-12 | 5653 | [A] | The explanation for the incorrect answers is removed, and the question and answer stems are changed to read:
AIR, RTC
5653. Your aircraft has an exhaust manifold type heating system. The exhaust manifold should be periodically inspected to avoid
A— carbon monoxide poisoning.
B— overheating in the cockpit.
C— extremely cold temperatures in the cabin. |
| 2-28 | 5737-1 | [C] | A new question is added to read:
RTC
5737-1. The greatest angle of incidence on a rotor blade can be found near
A— the hub.
B— the tip.
C— the root.
Angle of incidence is the angle between the chord line of a main or tail rotor blade and the rotor hub. It is a mechanical angle rather than an aerodynamic angle and is sometimes referred to as blade pitch angle. Blade twist provides higher pitch angles at the root where velocity is low and lower pitch angles nearer the tip where velocity is higher. (PLT470) — FAA-H-8083-21 |
| 2-35 | 5813 | [B] | This question is now applicable to both GLI and AIR exams. The explanation is changed to read:
In this situation, the pilot should aim at the near end of the runway, because of the tailwind increasing the aircraft’s ground speed. |
| 3-3 | 5604-1 | [C] | A new question is added to read:
ALL
5604-1. Structural damage or failure is more likely to occur in smooth air at speeds above
A— V_{NO}.
B— V_A.
C— V_{NE}.
Any speed above V_{NE} can cause damage; therefore, flight above this speed should be avoided even in smooth air. (PLT113) — FAA-H-8083-25 |
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-9</td>
<td>5999-2</td>
<td>[A]</td>
<td>A new question is added to read: ALL 5999-2. What is a consideration when using a hand-held GPS for VFR navigation? A— Position accuracy may degrade without notification. B— RAIM capability will be maintained for entire flight. C— Waypoints will still be accurate even if database is not current. While a hand-held GPS receiver can provide excellent navigation capability to VFR pilots, be prepared for intermittent loss of navigation signal, possibly with no RAIM warning to the pilot. (PLT354) — FAA-H-8083-25</td>
</tr>
<tr>
<td>3-9</td>
<td>5999-3</td>
<td>[B]</td>
<td>A new question is added to read: ALL 5999-3. You are flying an aircraft equipped with an electronic flight display and the air data computer fails. What instrument is affected? A— ADS-B in capability. B— Airspeed indicator. C— Attitude indicator. The pitot static inputs are received by the air data computer (ADC). If the ADC fails, the airspeed indicator will be affected. (PLT337) — FAA-H-8083-25</td>
</tr>
<tr>
<td>4-4</td>
<td>5967</td>
<td>[A]</td>
<td>The question and answer stems A and B are changed to read: 5967. You are acting as a commercial pilot, but are not operating under the regulations of 14 CFR Part 119. Which of these operations are you authorized to conduct? A— Aerial application and aerial photography. B— On-demand, passenger carrying flights of nine persons or less.</td>
</tr>
<tr>
<td>4-5</td>
<td>5545</td>
<td>[A]</td>
<td>A new question is added to read: AIR, MIL 5545. As a commercial pilot, you decide to start a small business flying non-stop tours to look at Christmas lights during the holiday season. What authorizations, if any, are required to conduct Christmas light tours? A— No authorizations or approvals are required if you hold the appropriate category and class rating for the aircraft that will be flown. B— You must apply for and receive a Letter of Authorization from a Flight Standards District Office. C— You must apply to the FAA to receive an exemption to carry passengers at night within a 50 mile radius of your departure airport. Commercial Pilots must hold an instrument rating to carry passengers at night. Assuming the pilot in this question holds an instrument rating in the category and class associated with this flight, no authorizations or approvals will be required. (PLT448) — 14 CFR §§61.133 and 119.1</td>
</tr>
</tbody>
</table>
The first paragraph is replaced with new text to read:

Student pilot, recreational pilot, and private pilot operations other than glider and balloon pilots require a third-class medical certificate, or if operating without a medical certificate, compliance with 14 CFR Part 68—referred to as BasicMed. A third-class medical certificate or compliance with BasicMed does not authorize the PIC to exercise commercial pilot privileges. To operate as a commercial pilot you are required to hold either a first- or second-class medical certificate. A third-class medical certificate expires at the end of:

4-6 5021-1 [A] A new question is added to read:
AIR, RTC, LTA, MIL
5021-1. The holder of a commercial pilot certificate while exercising commercial pilot privileges is restricted from operating under BasicMed
A— at anytime.
B— for flights over 18,000 FT MSL.
C— if carrying more than 5 passengers.

A third-class medical certificate or compliance with BasicMed does not authorize the PIC to exercise commercial pilot privileges. To operate as a commercial pilot you are required to hold either a first- or second-class medical certificate. (PLT427) — 14 CFR Parts 61 and 68

4-8 5539 [C] A new question is added to read:
AIR, MIL
5539. To act as PIC of a high performance airplane, which training or experience would meet the additional requirements?
A— Logged at least five hours as SIC in a high-performance or turbine-powered airplane in the last 12 calendar months.
B— Received and logged ground and flight training in an airplane with retractable landing gear, flaps, and controllable-pitch propeller.
C— Received and logged ground and flight training in a high-performance airplane and a received a logbook endorsement.

To act as pilot-in-command of a high-performance airplane (an airplane with an engine of more than 200 horsepower), the pilot must receive and log ground and flight training from an authorized instructor in a high-performance airplane and must be found proficient in the operation and systems of the airplane. In addition, the pilot must receive a one-time endorsement in the pilot's logbook from an authorized instructor who certifies that the pilot is proficient in operating a high-performance airplane. The training and endorsement is not required if the pilot has logged flight time as pilot-in-command of a high-performance airplane prior to August 4, 1997. (PLT451) — 14 CFR §61.31

4-10 5477 [C] A new question is added to read:
ALL, MIL
5477. You have accomplished 25 takeoffs and landings in multi-engine land airplanes in the previous 45 days. For a flight you plan to conduct today, this meets the PIC recency of experience requirements to carry passengers in which airplanes?
A— Multi- or single-engine land.
B— Single-engine land airplane.
C— Multi-engine land airplane.

No person may act as PIC of an aircraft carrying passengers unless, within the preceding 90 days, he or she has made three takeoffs and landings as the sole manipulator of the controls in an aircraft of the same category, class, and type (if required). (PLT442) — 14 CFR §61.57
4-15 5049-3 [C] A new question is added to read:

ALL, MIL 5049-3. You are pilot-in-command of a VFR flight that you think will be within the fuel range of your aircraft. As part of your preflight planning you must

A— be familiar with all instrument approaches at the destination airport.
B— list an alternate airport on the flight plan and confirm adequate takeoff and landing performance at the destination airport.
C— obtain weather reports, forecasts, and fuel requirements for the flight.

Before beginning a flight under IFR or a flight not in the vicinity of an airport, each PIC shall become familiar with all available information concerning that flight, including weather reports and forecasts, fuel requirements, available alternatives if the planned flight cannot be completed, and any known traffic delays of which the pilot-in-command has been advised by ATC. (PLT444) — 14 CFR §91.103

4-17 5051-3 [B] A new question is added to read:

ALL, MIL 5051-3. During preflight, you discover one of the passenger seats has a defective shoulder harness. All of the seats will be occupied. This flight is

A— allowed.
B— not allowed.
C— allowed so long as the passenger is notified of the defective shoulder harness.

No pilot may cause to be moved on the surface, takeoff, or land a U.S.-registered civil aircraft unless the PIC of that aircraft ensures that each person on board has been notified to fasten his or her safety belt and, if installed, his or her shoulder harness. (PLT464) — 14 CFR §91.107

4-25 5076-5 [B] A new question is added to read:

AIR, RTC, MIL 5076-5. An airplane is converging with a helicopter. Which aircraft has the right-of-way?

A— The aircraft on the left.
B— The aircraft on the right.
C— The faster of the two aircraft.

If aircraft of the same category (or an airplane and rotorcraft) are converging, the aircraft to the other’s right has the right-of-way. (PLT414) — 14 CFR §91.113

4-28 5992 [C] A new question is added to read:

ALL, MIL 5992. According to 14 CFR Part 91, at what minimum altitude may an airplane be operated unless necessary for takeoff and landing?

A— In congested areas, you must maintain 500 feet over obstacles and no closer than 500 feet to any person, vessel, vehicle, or structure.
B— In uncongested areas, 1,000 feet over any obstacle within a horizontal radius of 2,000 feet.
C— An altitude allowing for an emergency landing without undue hazard, if a power unit fails.

Except when necessary for takeoff or landing, no person may operate an aircraft below an altitude allowing, if a power unit fails, an emergency landing without undue hazard to persons or property on the surface. (PLT430) — 14 CFR §91.119

Answer (A) is incorrect because except when necessary for takeoff or landing, no person may operate an aircraft over any congested area of a city, town, or settlement, or over any open air assembly of persons, below an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft. Answer (B) is incorrect because except when necessary for takeoff or landing, no person may operate an aircraft over other than congested areas below an altitude of 500 feet above the surface except over open water or sparsely populated areas. In that case, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 4-31 | 5547 | [B] | **A new question is added to read:**
| | | | ALL, MIL 5547. You are conducting your preflight of an aircraft and notice that the last inspection of the emergency locator transmitter was 11 calendar months ago. You may
| | | | A— depart if you get a special flight permit.
| | | | B— depart because the ELT is within the inspection requirements.
| | | | C— not depart until a new inspection is conducted.
| | | | Emergency locator transmitters (ELTs) must be inspected within 12 calendar months after the last inspection. (PLT377) — 14 CFR §91.207 |
| 4-33 | 5987 | [C] | **A new question is added to read:**
| | | | ALL, MIL 5987. You are PIC of a flight and determine that the aircraft you planned to fly has an overdue Airworthiness Directive (AD). Which of the following is an appropriate decision?
| | | | A— No maintenance is available so you wait until after the trip to comply with the AD.
| | | | B— You make the flight because you can overfly an AD by 10 hours.
| | | | C— You cancel the flight and have the aircraft scheduled for maintenance.
| | | | No person may operate a product to which an Airworthiness Directive (AD) applies except in accordance with the requirements of that AD. (PLT378) — 14 CFR §39.3 |
| 4-35 | 5004-3 | [A] | **A new question is added to read:**
| | | | ALL, MIL 5004-3. On a post-flight inspection of your aircraft after an aborted takeoff due to an elevator malfunction, you find that the elevator control cable has broken. According to NTSB 830, you
| | | | A— must immediately notify the nearest NTSB office.
| | | | B— should notify the NTSB within 10 days.
| | | | C— must file a NASA report immediately.
| | | | Immediate notification is required by the operator of any civil aircraft when a flight control system malfunction or failure occurs. (PLT366) — 49 CFR §830.5 |
| 5-6 | 5082-4 | [A] | **A new question is added to read:**
| | | | ALL, MIL 5082-4. You would like to enter Class B airspace and contact the approach controller. The controller responds to your initial radio call with “N125HF standby.” May you enter the Class B airspace?
| | | | A— You must remain outside Class B airspace until controller gives you a specific clearance.
| | | | B— You may continue into the Class B airspace and wait for further instructions.
| | | | C— You may continue into the Class B airspace without a specific clearance, if the aircraft is ADS-B equipped.
| | | | No. You are not to enter the Class B airspace until you have received authorization from ATC. “Standby” simply means the controller has your request, it does not give you permission to enter the airspace. (PLT161) – AIM ¶3-2-3 |
| 5-9 | 5569-1 | [C] | **A new question is added to read:**
| | | | ALL, MIL 5569-1. (Refer to Figure 53.) What is indicated by the star next to the “L” in the airport information box for the MADERA (MAE) airport north of area 2?
| | | | A— Special VFR is prohibited.
| | | | B— There is a rotating beacon at the field.
| | | | C— Lighting limitations exist.
<p>| | | | The “L” with an asterisk indicates lighting limitations exist. Pilots should refer to the Chart Supplement for this airport for details on these limitations. (PLT162) — Sectional Chart Legend |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 5-9 | 5575-1 | [C] | A new question is added to read:
ALL, MIL
5575-1. What must a pilot do or be aware of when transitioning an Alert Area?
A— All pilots must contact the controlling agency to ensure aircraft separation.
B— Non-participating aircraft may transit the area as long as they operate in accordance with their waiver.
C— Be aware that the area may contain unusual aeronautical activity or a high volume of pilot training.
Alert Areas inform pilots of airspace that may contain a high volume of pilot training or an unusual type of aerial activity. While pilots should be particularly alert in these areas, there are no restrictions on flying through them. (PLT376) — Pilot/Controller Glossary |
| 5-10 | 5993 | [A] | A new question is added to read:
ALL, MIL
5993. (Refer to Figure 52, Area 8). The traffic pattern altitude at the Auburn (AUN) airport is 1,000 feet AGL. Can you practice landings under VFR when the AWOS is reporting a ground visibility of 2 miles?
A— Yes, you will be operating in a combination of Class E and G airspace.
B— No, the reported ground visibility must be at least 3 miles.
C— No, the Class E airspace extends to the airport surface.
Auburn is inside the magenta shading, which indicates the Class E airspace begins at 700 feet AGL. Therefore you are operating in a combination of Class E and G airspace. (PLT163) – Sectional Chart Legend |
| 5-10 | 5570-1 | [B] | A new question is added to read:
ALL, MIL
5570-1. (Refer to Figure 53, Area 4.) You plan to depart on a day VFR flight from the Firebaugh (F34) airport. What is the floor of controlled airspace above this airport?
A— 1,200 feet above the airport.
B— 700 feet above the airport.
C— 1,500 feet above the airport.
Firebaugh (F34) is inside the magenta shading, which indicates the Class E airspace begins at 700 feet AGL. (PLT161) — Sectional Chart Legend |
| 5-11 | 5994 | [C] | A new question is added to read:
ALL, MIL
5994. (Refer to Figure 52, Area 2.) When departing the Rio Linda Airport (L36) to the northwest at an altitude of 1,000 feet AGL, you
A— must make contact with the McClellan (MCC) control tower as soon as practical after takeoff.
B— are not required to contact any ATC facilities if you do not enter the Class C airspace.
C— must make contact with the Sacramento Intl (SMF) control tower immediately after takeoff.
Rio Linda (L36) is within Class E airspace at the surface and within Class C airspace starting at 1,600 feet MSL. Departing to the northwest, you will enter Class C airspace at the surface and must contact Sacramento Intl (SMF) control tower immediately after takeoff prior to entering the Class C airspace. (PLT370) — Sectional Chart Legend |
| 5-12 | 5995 | [A] | A new question is added to read:
ALL, MIL
5995. (Refer to Figure 53.) You are planning a VFR westbound flight departing the Fresno Chandler Executive Airport (FCH) and you will be passing through the active Lemoore C and A MOAs. What action should you take?
A— Exercise extreme caution while in the boundaries of the MOA.
B— Avoid the MOA, VFR, and IFR flights are prohibited during day light hours.
C— Contact the aircraft operating in the MOA on the Guard frequency of 121.5.
Pilots operating under VFR should exercise extreme caution while flying within an MOA when military activity is being conducted. The activity status (active/inactive) of MOAs may change frequently. Therefore, pilots should contact any FSS within 100 miles of the area to obtain accurate real-time information concerning the MOA hours of operation. Prior to entering an active MOA, pilots should contact the controlling agency for traffic advisories. (PLT376) – AIM ¶3-4-5 |
A new question is added to read:
ALL, MIL
5996. (Refer to Figure 54, Area 3.) What is the significance of R-2531? This is a restricted area
A— for IFR aircraft.
B— where aircraft may never operate.
C— where often invisible hazards exist.

Restricted Areas denote the presence of unusual, often invisible, hazards to aircraft such as artillery firing, aerial gunnery, or guided missiles. Penetration of Restricted Areas without authorization of the using or controlling agency may be extremely hazardous to the aircraft and its occupants. (PLT376) — AIM ¶3-4-3

A new question is added to read:
ALL, MIL
5574-3. If a military training route has flights operating at or below 1,500 feet AGL, it will be designated by
A— VR and a three digit number only.
B— IR or VR and a four digit number.
C— IR or VR and a three digit number.

Military Training Routes (MTRs) in which flights are conducted at or below 1,500 feet AGL are designated by the letters IR or VR and a four-digit number. (PLT393) — AIM ¶3-5-2

Your VFR flight will be conducted above 10,000 MSL in Class E airspace. What is the minimum flight visibility?
A— 3 NM.
B— 5 SM.
C— 1 SM.

The only area requiring 5 statute miles visibility is 10,000 feet MSL and up (when above 1,200 feet AGL). (PLT163) — 14 CFR §91.155

When departing from a runway that is covered with snow or slush, what can a pilot do to prevent damage to the landing gear due to the conditions?
A— Do not retract the landing gear immediately to allow the gear to air-dry.
B— Immediately retract the landing gear so it can be heated in the gear wells.
C— Fly at a speed above the green arc of the airspeed indicator can remove the snow and slush.

If departing from an airstrip with wet snow or slush on the takeoff surface, the gear should not be retracted immediately so that any wet snow or slush is allowed to air-dry (PLT126) — FAA-H-8083-3

What should you expect when you are told that LAHSO operations are in effect at your destination airport?
A— All aircraft must operate on an IFR clearance due to high traffic volume.
B— That ATC will give you a clearance to land and hold short of a specified point on the runway.
C— Delays due to low IFR conditions and high traffic volume.

Land and Hold Short Operations (LAHSO) are air traffic control procedures to balance the needs for increased airport capacity and system efficiency, consistent with safety. (PLT140) — AIM ¶4-3-11

Answer (A) is incorrect because LAHSO clearances are also available to aircraft operating VFR. Answer (C) is incorrect because LAHSO are found at high density airports and are not due to IFR conditions.
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 5-17 | 5659-1 | [C] | *The answer stems, explanation, and explanation for the incorrect answers are changed to read:*
| | | | A— Illustration D.
| | | | B— Illustration G.
| | | | C— Illustration H.
| | | | While clearing an active runway, you are most likely to be clear of the ILS critical area when you pass the sign depicted in illustration H. This is the ILS critical area boundary sign.
| | | | Answer (A) is incorrect because this symbol prohibits aircraft entry into an area. Answer (B) is incorrect because Illustration G indicates you are most likely clear of the runway. |
| 5-18 | 5657 | [C] | *The answer stems, explanation, and explanation for the incorrect answers are changed to read:*
| | | | A— passes the red symbol shown in illustration D.
| | | | B— is on the dashed-line side of Illustration G.
| | | | C— is past the solid-line side of Illustration H.
| | | | After landing, the pilot generally calls ground control when the aircraft is completely clear of the runway. This is when the aircraft is on the solid-line side of Illustration G. The solid lines always indicate the side on which the aircraft is to hold.
| | | | Answer (A) is incorrect because Illustration D prohibits aircraft entry into an area. Answer (B) is incorrect because you are still on the runway if you are on the dashed-line side of Illustration G. |
| 5-18 | 5658 | [B] | *The question and explanation for the incorrect answers are changed to read:*
| | | | 5658. (Refer to Figure 51.) Illustration D would most likely be found
| | | | Answer (A) is incorrect because this refers to Illustration G. Answer (C) is incorrect because this refers to Illustration H. |
| 5-18 | 5659-2 | [A] | *The answer stems and explanation are changed to read:*
| | | | A— Illustration H.
| | | | B— Illustration D.
| | | | C— Illustration G.
| | | | Illustration H is located adjacent to the ILS holding position marking on the pavement and can be seen by pilots leaving the critical area. The sign is intended to provide pilots with another visual cue which they can use as a guide in deciding when they are clear of the ILS critical area. |
| 5-18 | 5660 | [A] | *The answer stems, explanation, and explanation for the incorrect answers are changed to read:*
| | | | A— Illustration D.
| | | | B— Illustration G.
| | | | C— Illustration H.
| | | | Illustration D prohibits an aircraft from entering an area. This sign would typically be located on one-way taxiways or a vehicle roadway. Thus, this sign does not directly address runway incursions with other aircraft.
| | | | Answer (B) is incorrect because Illustration G is used to indicate when you are clear of the runway. Answer (C) is incorrect because Illustration H is used to indicate when you are clear of the ILS critical area. |
| 5-19 | 5983-2 | [C] | *A new question is added to read:*
| | | | ALL 5983-2. (Refer to Figure 61.) Ground control has instructed you to taxi from Alfa to Foxtrot to the active runway. According to the sign in the figure, which direction would you turn at this intersection to comply with ATC?
| | | | A— No turn is required.
| | | | B— The turn will be made to the right.
| | | | C— The turn will be made to the left.
| | | | Orientation of signs are from left to right in a clockwise manner. Left turn signs are on the left of the location sign and right turn signs are on the right side of the location sign. Figure 61 indicates taxiway Foxtrot will be a left turn from Alfa. (PLT141) — AIM ¶2-3-10 |
A new question is added to read:

ALL

5999. You are preflight planning in the morning before an afternoon flight. Where would you find information regarding an "airport surface hot spot"?

A— Call the Automated Flight Service Station.
B— In the Chart Supplements U.S. (formerly Airport/Facility Directory).
C— In the NOTAMs during your preflight briefing.

A hot spot is defined as a location on an airport movement area with a history of potential risk of collision or runway incursion, and where heightened attention by pilots and drivers is necessary. Hotspots are depicted on some airport charts as circled areas in the Chart Supplements U.S. (PLT281) — FAA-H-8083-25

A new question is added to read:

ALL

5763-4. You attended a party last night and consumed several glasses of wine. You are planning to fly your aircraft home and have been careful to make sure 8 hours have passed since your last alcoholic drink. You can make the flight now only if you are not under the influence of alcohol and your blood alcohol level is

A— below .04%.
B— below .08%.
C— 0.0%.

It is against regulations to operate an aircraft while under the influence of alcohol or drugs, or with an alcohol concentration of .04 percent or above, or within 8 hours of consuming alcohol. (PLT463) — 14 CFR §91.17

A new question is added to read:

ALL

5998. You are most likely to experience somatogravic illusion during

A— a rapid descent.
B— deceleration upon landing.
C— rapid acceleration during takeoff.

A rapid acceleration during takeoff can create the illusion of being in a nose-up attitude. The disoriented pilot will push the aircraft into a nose-low, or dive attitude. This is called a somatogravic illusion. (PLT334) — FAA-H-8083-25

A new question is added to read:

ALL

5991. There is a high pressure system that is located south of your planned route in the Northern Hemisphere on a west-to-east cross-country flight. To take advantage of favorable winds, you would plan your route

A— on the north side of the high pressure area.
B— on the south side of the high pressure area.
C— through the middle of the high pressure area.

High pressure flows outward in a clockwise direction so pilot will gain tailwinds by flying on the north side of the high pressure system. (PLT517) — AC 00-6

A new question is added to read:

ALL

5343-1. What are the characteristics of an unstable atmosphere?

A— A cool, dry air mass.
B— A warm, humid air mass.
C— Descending air in the northern hemisphere.

Characteristics of unstable air include cumuliform clouds, showery precipitation, turbulence, and good visibility, except in blowing obstructions. (PLT511) — AC 00-6
A new question is added to read:

You are avoiding a thunderstorm that is in your flightpath. You are over 20 miles from the cell however, you are under the anvil of the cell. Is this a hazard?

A— No, you are at a safe distance from the cell.
B— Yes, hail can be discharged from the anvil.
C— Yes, this is still in the area of dissipation.

Avoid by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo. This is especially true under the anvil of a large cumulonimbus where hail can be discharged. (PLT495) — AC 00-6

A new question is added to read:

What is the thickness of the cloud layer given a field elevation of 1,500 feet MSL with tops of the overcast at 7,000 feet MSL?

METAR KHOB 151250Z 17006KT 4SM OVC010 13/11 A2998

A— 4,500 feet.
B— 6,500 feet.
C— 5,500 feet.

KHOB reports a ceiling of 1,000 feet (OVC010). This means the bottom of the overcast layer is 2,500 feet (1,500 MSL + 1,000 feet AGL). The top of the overcast is reported at 7,000 feet MSL. Therefore, the overcast layer is 4,500 feet thick (7,000 – 2,500). (PLT059) — AIM ¶7-1-29

A new question is added to read:

What is the bottom of the lowest overcast layer in the following pilot report?

KMOB UA /OV APE230010/TM 1515/FL085/TP BE20/SK BKN065/WX FV03SM HZ FU/TQ 20/TB LGT

A— There is not a defined ceiling in this report.
B— There is a layer reported at 8,500 feet.
C— There is a broken layer at 6,500 feet.

The sky cover portion of the report states “SK BKN 065” which means sky cover is broken at 6,500 feet. (PLT061) — AIM ¶7-1-19

Answer (A) is incorrect because the ceiling is defined in the “SK” section of the report. Answer (B) is incorrect because “FL085” is detailing the flight level the report was given at, not the sky coverage.

The question, answer stems, and explanation are changed to read:

In the following METAR/TAF for HOU, what is the ceiling and visibility forecast on the 7th day of the month at 0600Z?

KHOU 061734Z 0618/0718 16014G22KT P6SM VCSH BKN018 BKN035
FM070100 17010KT P6SM BKN015 OVC025
FM070500 17008KT 4SM BR SCT008 OVC012
FM071000 18005KT 3SM BR OVC007
FM071500 23008KT 5SM BR VCSH SCT008 OVC015

A— Visibility 6 miles with a broken ceiling at 15,000 feet MSL.
B— 4 nautical miles of visibility and an overcast ceiling at 700 feet MSL.
C— 4 statute miles visibility and an overcast ceiling at 1,200 feet AGL.

The third line of the TAF reads from the 7th at 0500 wind 170 at 8 knots, visibility 4 statute miles in mist, scattered 800 AGL, overcast 1,200 AGL. Because the next weather forecast is not given until the 7th at 1000, you would use the information from the forecast for the 7th at 0500 to answer the question, “FM070500 17008KT 4SM BR SCT008 OVC012.” Remember that a scattered layer does not signify a ceiling. (PLT288) — FAA-H-8083-25
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| 8-21 | 5663 | [A] | The question now reads: 5663. If you experience an engine failure in a single-engine aircraft after takeoff, you should
A — establish the proper glide attitude.
B — turn into the wind.
C — adjust the pitch to maintain V_Y.
In the event of an engine failure on initial climb-out, the pilot’s first responsibility is to maintain aircraft control. At a climb pitch attitude without power, the airplane is at or near a stalling AOA. At the same time, the pilot may still be holding right rudder. The pilot must immediately lower the nose to prevent a stall while moving the rudder to ensure coordinated flight. Attempting to turn back to the takeoff runway should not be attempted. The pilot should establish a controlled glide toward a plausible landing area, preferably straight ahead. (PLT208) — FAA-H-8083-3 |
| 8-21 | 5614-1 | [B] | A new question is added to read: 5614-1. When conducting a go-around, the pilot must be aware that
A — radio communications are key to alerting other aircraft in the pattern that a go-around maneuver is being conducted.
B — the airplane is trimmed for a power-off condition, and application of takeoff power will cause the nose to rise rapidly.
C — flaps should be raised as quickly as possible to reduce drag and increase airspeed for a successful go-around.
When takeoff power is applied, it is usually necessary to hold considerable pressure on the controls to maintain straight flight and a safe climb attitude. Since the airplane is trimmed for the approach (a low power and low airspeed condition), application of maximum allowable power requires considerable control pressure to maintain a climb pitch attitude. The addition of power tends to raise the airplane’s nose suddenly and it veers to the left. (PLT354) — FAA-H-8083-3
Answer (A) is incorrect because power is the pilot’s first concern in a go-around situation; aviate before you communicate. Answer (C) is incorrect because flaps should only be retracted once power has been applied and the proper climb attitude established. |
| 8-23 | 5997 | [A] | A new question is added to read: 5997. (Refer to Figure 32.) Determine the approximate runway length necessary for takeoff.
Given:
Temperature = 40°F
Pressure altitude = 4,000 ft
Weight = 3,200 lbs
Headwind = 15 kts
A — 1,300 feet.
B — 850 feet.
C — 950 feet.
1. Enter chart at 40°F, proceed up to the 4,000-foot pressure altitude line.
2. From this point, go to the right, to the weight reference line.
3. From this point, proceed up and to the right on the trend lines, until intercepting the 3,200 pound weight line. Then proceed to the right, to the wind reference line.
4. From this point, proceed to the right on the trend lines until intercepting 15 kts and read 1,300 feet. (PLT011) — FAA-H-8083-25 |
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-6</td>
<td>5999-1</td>
<td>[A]</td>
<td>A new question is added to read: ALL 5999-1. What procedure could a pilot use to navigate under VFR from one point to another when ground references are not visible? A— Dead reckoning. B— Pilotage. C— VFR is not allowed in these circumstances. Pilotage is navigation by reference to landmarks or checkpoints. Dead reckoning is navigation solely by means of computations based on time, airspeed, distance, and direction. (PLT200) — FAA-H-8083-25</td>
</tr>
<tr>
<td>9-11</td>
<td>5990</td>
<td>[B]</td>
<td>A new question is added to read: ALL 5990. As air temperature increases, density altitude will A— decrease. B— increase. C— remain the same. Density altitude is the altitude in standard air where the density is the same as the existing density. It is affected by the pressure, temperature, and moisture content of the air. Both a decrease in pressure and an increase in temperature decrease the density of the air and increase the density altitude. (PLT203) — AC 00-6</td>
</tr>
<tr>
<td>9-15</td>
<td>5477</td>
<td></td>
<td>This question has been removed.</td>
</tr>
<tr>
<td>9-19</td>
<td>5122-3</td>
<td>[A]</td>
<td>Add a new question to read: AIR, RTC, LTA, MIL 5122-3. When navigating using only VOR/DME based RNAV, selection of a VOR NAVAID that does not have DME service will A— result in loss of RNAV capability. B— have no effect on navigation capability. C— not impact navigation provided enough GPS satellites are operating. VOR/DME-based RNAV units need both VOR and DME signals to operate in RNAV mode. If the NAVAID selected is a VOR without DME, RNAV mode will not function. When DME is not available, the RNAV unit will function as a VOR receiver with DME capability in VOR (or non-RNAV) mode. (PLT354) — FAA-H-8083-25</td>
</tr>
<tr>
<td>9-21</td>
<td>5539</td>
<td></td>
<td>This question has been removed.</td>
</tr>
<tr>
<td>9-21</td>
<td>5545</td>
<td></td>
<td>This question has been removed.</td>
</tr>
<tr>
<td>9-21</td>
<td>5547</td>
<td></td>
<td>This question has been removed.</td>
</tr>
<tr>
<td>10-3</td>
<td>5548</td>
<td></td>
<td>This question has been removed.</td>
</tr>
</tbody>
</table>