Pass your test and know what is essential to become a safe, competent pilot—from the most trusted source in aviation training
Pass your test and know what is essential to become a safe, competent pilot—from the most trusted source in aviation training

READER TIP
The FAA Knowledge Exam Questions can change throughout the year. Stay current with test changes; sign up for ASA’s free email update service at www.asa2fly.com/testupdate
About the Contributors

Jackie Spanitz
General Manager
Aviation Supplies & Academics, Inc.

As General Manager of Aviation Supplies & Academics, Jackie Spanitz oversees maintenance and development of more than 750 titles and pilot supplies in the ASA product line. Ms. Spanitz has worked with airman training and testing for more than 20 years, including participation in the ACS development committees. Jackie holds a Bachelor of Science degree in aviation technology from Western Michigan University, a Masters degree from Embry Riddle Aeronautical University, and Instructor and Commercial Pilot certificates. She is the author of Guide to the Flight Review, and the technical editor for ASA's Test Prep and FAR/AIM series.

Paul Hamilton
Sport Pilot and Light-Sport Aircraft Expert
Adventure Productions

Flight instructor, FAA Designated Examiner, and Sport/Ultralight Pilot for more than 30 years, Paul contributed sport pilot, light-sport aircraft information, and incorporation of weight-shift control and powered parachute requirements.

About ASA: Aviation Supplies & Academics, Inc. (ASA) has been providing trusted aviation training products for more than 75 years to flight instructors, aviation maintenance technicians, air traffic controllers, career aviators, students, remote pilots and drone operators. ASA's pilot supplies, software, and publications are supported with integrity, consistency, superior quality, and the best customer service in the industry. Aviators are invited to visit www.asa2fly.com for a free copy of our catalog.
Contents

Instructions
Preface .. vii
Updates and Practice Tests ix
Description of the Tests .. x
Knowledge Test Eligibility Requirements xi
Process for Taking a Knowledge Test xi
Use of Test Aids and Materials xv
Retesting Procedures .. xvi
Cheating or Other Unauthorized Conduct xvi
Eligibility Requirements .. xvii
Eligibility for the Private Pilot Certificate xvii
Eligibility for the Sport Pilot Certificate xix
Knowledge Exam References xxi
ASA Test Prep Layout ... xxii
Opportunity Knocking: Become a Flight Instructor! xxiii

Chapter 2 Aircraft Systems
Reciprocating Engines ... 2–3
Ignition and Electrical Systems 2–4
Fuel Induction Systems .. 2–6
Carburetor Ice.. 2–7
Aviation Fuel .. 2–10
Engine Temperatures ... 2–12
Propellers ... 2–15
Torque .. 2–16
Preflight Inspection Procedures 2–18
Helicopter Systems ... 2–19
Glider Operations ... 2–25
Lighter-Than-Air Operations 2–33
Powered Parachute and Weight-Shift Control Operations .. 2–41
Gyroplane ... 2–48

Chapter 1 Basic Aerodynamics
Aerodynamic Terms ... 1–3
Axes of Rotation and the Four Forces
 Acting in Flight ... 1–6
 Lift ... 1–7
 Weight ... 1–7
 Thrust ... 1–7
 Drag .. 1–8
Stability ... 1–10
Turns, Loads, and Load Factors 1–12
Maneuvers ... 1–16
 Rectangular Course 1–16
 Turns Around a Point 1–16
 S-Turns ... 1–17
Stalls and Spins .. 1–19
Flaps .. 1–20
Ground Effect ... 1–21
Wake Turbulence ... 1–23

Chapter 3 Flight Instruments
Pitot-Static Instruments 3–3
Airspeeds and the Airspeed Indicator 3–4
The Altimeter and Altimeters 3–8
Gyroscopic Instruments 3–13
 Attitude Indicator .. 3–13
 Turn Coordinator ... 3–13
 Heading Indicator .. 3–13
Magnetic Compass (Northern Hemisphere) 3–15

Chapter 4 Regulations
Introduction .. 4–3
Pilot Certificate Privileges and Limitations 4–3
Pilot Ratings ... 4–9
Medical Certificates .. 4–10
Required Certificates ... 4–13
Recent Flight Experience 4–14
High-Performance Airplanes 4–16

Continued
Chapter 6 **Weather**

- The Heating of the Earth .. 6–3
- Circulation and Wind .. 6–4
- Temperature ... 6–5
- Moisture .. 6–6
- Air Masses and Fronts .. 6–8
- Stability of the Atmosphere 6–9
- Clouds ... 6–10
- Turbulence ... 6–14
- Thunderstorms ... 6–15
- Wind Shear ... 6–18
- Icing .. 6–19
- Fog .. 6–21
- Frost ... 6–22

Chapter 7 **Weather Services**

- Aviation Routine Weather Report (METAR) 7–3
- Pilot Weather Reports (PIREPs) (UA) 7–5
- Terminal Aerodrome Forecast (TAF) 7–7
- Graphical Forecasts for Aviation (GFA) 7–8
- Winds and Temperatures Aolf Forecast (FB) 7–9
- Inflight Weather Advisories (WA, WS, WST) 7–10
- Obtaining a Telephone Weather Briefing 7–12

Chapter 8 **Aircraft Performance**

- Weight and Balance .. 8–3
 - **Airplane** ... 8–4
 - **Weight-Shift Control** .. 8–4
 - **Powered Parachute** ... 8–4
- Computing Weight and Balance Problems
 - Using a Table ... 8–6
- Computing Weight and Balance Problems
 - Using a Graph ... 8–12
- Density Altitude and Aircraft Performance 8–24
- Takeoff Distance ... 8–30
- Cruise Power Setting Table 8–34
- Landing Distance Graphs and Tables 8–36
- Headwind and Crosswind Component Graph 8–42
- Maximum Range Performance 8–44
Chapter 9 Enroute Flight
Pilotage.. 9–3
Time.. 9–5
Topography... 9–8
Dead Reckoning... 9–11
 Plotting Courses... 9–11
 Magnetic Variation... 9–12
 Magnetic Deviation... 9–14
Wind and Its Effects... 9–14
The Wind Triangle.. 9–17
The Flight Computer (E6-B)............................... 9–18
 Finding Wind Correction Angle (WCA) and
 Ground Speed... 9–18
 Flight Computer Calculator Face..................... 9–20
 Finding Time, Rate, and Distance..................... 9–21
 Calculating Fuel Consumption......................... 9–23
 Finding True Airspeed and
 Density Altitude... 9–24
Airspace.. 9–32

Chapter 10 Navigation
VHF Omnidirectional Range (VOR)............... 10–3
VOR Orientation... 10–3
Course Determination.. 10–6
VOR Airways.. 10–8
VOR Receiver Check Points.............................. 10–9
Global Positioning System (GPS)................... 10–10

Chapter 11 Communication Procedures
Phraseology, Techniques, and Procedures........ 11–3
Airport Traffic Area Communications and
 Light Signals... 11–10
Radar Assistance to VFR Aircraft....................... 11–12
Transponder... 11–14
Emergency Locator Transmitter (ELT).............. 11–17

Cross References
A: Question Number and Page Number.............. A–1
B: Learning Statement Code and
 Question Number... B–1
Welcome to ASA's Test Prep Series. ASA's test books have been helping pilots prepare for the FAA Knowledge Tests for more than 60 years with great success. We are confident that with proper use of this book, you will score very well on any of the private, sport, and recreational pilot certificate tests.

Begin your studies with a classroom or home-study ground school course, which will involve reading a comprehensive Private Pilot textbook. Conclude your studies with this Test Prep or comparable software. Read the question, select your choice for the correct answer, then read the explanation. Use the Learning Statement Codes and references that conclude each explanation to identify additional resources if you need further study of a subject. Upon completion of your studies, take practice tests at www.prepware.com (see inside front cover for your free account).

The FAA Private, Sport, and Recreational Pilot questions have been arranged into chapters based on subject matter. Topical study, in which similar material is covered under a common subject heading, promotes better understanding, aids recall, and thus provides a more efficient study guide. Study and place emphasis on those questions most likely to be included in your test (identified by the aircraft category above each question). For example, a pilot preparing for the Private Airplane test would focus on the questions marked “ALL” and “AIR,” and a pilot preparing for the Private Helicopter test would focus on the questions marked “ALL” and “RTC.”

It is important to answer every question assigned on your FAA Knowledge Test. If in their ongoing review, the FAA authors decide a question has no correct answer, is no longer applicable, or is otherwise defective, your answer will be marked correct no matter which one you chose. However, you will not be given the automatic credit unless you have marked an answer. Unlike some other exams you may have taken, there is no penalty for “guessing” in this instance.

The FAA exams are “closed tests” which means the exact database of questions is not available to the public. The question and answer choices in this book are based on our extensive history and experience with the FAA testing process. You might see similar although not exactly the same questions on your official FAA exam. Answer stems may be rearranged from the A, B, C order you see in this book. Therefore, be careful to fully understand the intent of each question and corresponding answer while studying, rather than memorize the A, B, C answer. You may be asked a question that has unfamiliar wording; studying and understanding the information in this book and the associated references will give you the tools to answer question variations with confidence.

If your study leads you to question an answer choice, we recommend you seek the assistance of a local instructor. We welcome your questions, recommendations or concerns:

Aviation Supplies & Academics, Inc.
7005 132nd Place SE
Newcastle, WA 98059-3153
Voice: 425.235.1500 Fax: 425.235.0128
Email: cfi@asa2fly.com Website: www.asa2fly.com

The FAA appreciates testing experience feedback. You can contact the branch responsible for the FAA Knowledge Exams at:

Federal Aviation Administration
AFS-630, Airman Testing Standards Branch
PO Box 25082
Oklahoma City, OK 73125
Email: afs630comments@faa.gov
Updates and Practice Tests

Free Test Updates for the One-Year Life Cycle of Test Prep Books

The FAA rolls out new tests as needed throughout the year; this typically happens in June, October, and February. The FAA exams are “closed tests” which means the exact database of questions is not available to the public. ASA combines more than 60 years of experience with expertise in airman training and certification tests to prepare the most effective test preparation materials available in the industry.

You can feel confident you will be prepared for your FAA Knowledge Exam by using the ASA Test Preps. ASA publishes test books each June and keeps abreast of changes to the tests. These changes are then posted on the ASA website as a Test Update.

Visit the ASA website before taking your test to be certain you have the most current information. While there, sign up for ASA’s free email Update service. We will then send you an email notification if there is a change to the test you are preparing for so you can review the Update for revised and/or new test information.

www.asa2fly.com/testupdate

We invite your feedback. After you take your official FAA exam, let us know how you did. Were you prepared? Did the ASA products meet your needs and exceed your expectations? We want to continue to improve these products to ensure applicants are prepared, and become safe aviators. Send feedback to: cfi@asa2fly.com

www.prepware.com

Helping you practice for written exams.

As the experts in FAA Knowledge Exam preparation, we want you to have the confidence needed before heading to the testing center, and help eliminate the hassle and expense of retaking exams.

> Realistic Test Simulation
 Test questions and time allowed replicate the official FAA exam

> Performance Graphs
 Review how you did, track your performance and review explanations for the questions you missed

> Gain Confidence
 Go into your exam fully prepared after practicing up to 5 simulated tests

> Succeed
 Pass your exam, achieve your goals, and set new ones

Remote Pilot • Sport Pilot • Private Pilot • Instrument Rating • Commercial Pilot • Flight Instructor • Ground Instructor
Fundamentals of Instructing • Flight Engineer • Airline Transport Pilot • AMT General • Airframe • Powerplant
Practice tests are also available as an app! www.asa2fly.com/apps
ASA Test Prep Layout

The sample FAA questions have been sorted into chapters according to subject matter. Within each chapter, the questions have been further classified and all similar questions grouped together with a concise discussion of the material covered in each group. This discussion material of "Chapter text" is printed in a larger font and spans the entire width of the page. Immediately following the sample FAA Question is ASA's Explanation in italics. The last line of the Explanation contains the Learning Statement Code and further reference (if applicable). See the EXAMPLE below.

Figures referenced by the Chapter text only are numbered with the appropriate chapter number, i.e., “Figure 1-1” is Chapter 1’s first chapter-text figure.

Some Questions refer to Figures or Legends immediately following the question number, i.e., “3201. (Refer to Figure 14.).” These are FAA Figures and Legends which can be found in the separate booklet: Airman Knowledge Testing Supplement (CT-8080-XX). This supplement is bundled with the Test Prep and is the exact material you will have access to when you take your computerized test. We provide it separately, so you will become accustomed to referring to the FAA Figures and Legends as you would during the test.

Figures referenced by the Explanation and pertinent to the understanding of that particular question are labeled by their corresponding Question number. For example: the caption “Questions 3245 and 3248” means the figure accompanies the Explanations for both Question 3245 and 3248.

Answers to each question are found at the bottom of each page.

EXAMPLE:

Four aerodynamic forces are considered to be basic because they act upon an aircraft during all flight maneuvers. There is the downward-acting force called WEIGHT which must be overcome by the upward-acting force called LIFT, and there is the rearward-acting force called DRAG, which must be overcome by the forward-acting force called THRUST.

| ALL, SPO 3201. (Refer to Figure 14.) The four forces acting on an airplane in flight are |
| A— lift, weight, thrust, and drag. |
| B— lift, weight, gravity, and thrust. |
| C— lift, gravity, power, and friction. |

Lift, weight, thrust, and drag are the four basic aerodynamic forces acting on an aircraft in flight. (PLT235) — FAA-H-8083-25

Answer (B) is incorrect because the force of gravity is always the same number and reacts with the airplane’s mass to produce a different weight for almost every airplane. Answer (C) is incorrect because weight is the final product of gravity, thrust is the final product of power, and drag is the final product of friction. Power, gravity, and friction are only parts of the aerodynamic forces of flight.

Note: The FAA does not identify which questions are on the different ratings' tests. Unless the wording of a question is pertinent to only one rating category, it may be found on any of the tests.

| Category rating. This question may be found on tests for these ratings. * |
| See separate book: Airman Knowledge Testing Supplement (CT-8080-XX) |
| Question and answer choices |
| Explanation |
| Code line. FAA Learning Statement Code in parentheses, followed by references for further study. |
| Incorrect answer explanation. Reasons why answer choices are incorrect explained here. |

*ALL = All aircraft AIP = Airplane GLI = Glider LTA = Lighter-Than-Air (applies to hot air balloon, gas balloon and airship) REC = Recreational RTC = Rotorcraft (applies to both helicopter and gyroplane) PPC = Powered Parachute WSC = Weight-Shift Control

SPO = Sport Pilot (all aircraft categories) LSA = Sport Pilot Airplane LSG = Sport Pilot Glider LSL = Sport Pilot Lighter-Than-Air LSP = Sport Pilot Powered Parachute LSR = Sport Pilot Rotorcraft LSW = Sport Pilot Weight-Shift-control
Chapter 3

Flight Instruments

Pitot-Static Instruments 3–3
Airspeeds and the Airspeed Indicator 3–4
The Altimeter and Altitudes 3–8
Gyrosopic Instruments 3–13
 Attitude Indicator 3–13
 Turn Coordinator 3–13
 Heading Indicator 3–13
Magnetic Compass (Northern Hemisphere) 3–15
Pitot-Static Instruments

The pressure altimeter, vertical-speed indicator, and airspeed indicator operate in response to pressures through the **pitot-static system**. See Figure 3-1.

Static (atmospheric) **pressure** is taken from the static vents and is provided to all three instruments. Clogging of the static vents or line will cause all three instruments to become inoperative or to display erroneous readings.

Impact (ram) **pressure** is taken from the pitot tube and furnished to the airspeed indicator only. Clogging of the pitot opening will not affect operation of the altimeter or vertical speed indicator.

Figure 3-1. Pitot-static system

ALL 3248. Which instrument will become inoperative if the pitot tube becomes clogged?

A — Altimeter.
B — Vertical speed.
C — Airspeed.

The pitot tube provides input for the airspeed indicator only. (PLT337) — FAA-H-8083-25

Answers (A) and (B) are incorrect because the altimeter and vertical speed indicator operate off the static system and are not affected by a clogged pitot tube.

ALL 3249. Which instrument(s) will become inoperative if the static vents become clogged?

A — Airspeed only.
B — Aitmeter only.
C — Airspeed, altimeter, and vertical speed.

Airspeed, altimeter and vertical speed all receive static input and would indicate inaccurately if the static sources became plugged. (PLT337) — FAA-H-8083-25
Chapter 3 Flight Instruments

Airspeeds and the Airspeed Indicator

A pilot must be familiar with the following airspeed terms and abbreviations:

- **Indicated Airspeed (IAS)** — the uncorrected reading obtained from the airspeed indicator.
- **Calibrated Airspeed (CAS)** — indicated airspeed corrected for installation and instrument error.
- **True Airspeed (TAS)** — calibrated airspeed corrected for temperature and pressure variations.

A number of airspeed limitations, abbreviated as “V” speeds, are indicated by color-coded marking on the airspeed indicator (see Figure 3-2):

- **V_{SO}** — stall speed or minimum steady flight speed in the landing configuration (the lower limit of the white arc).
- **V_{FE}** — maximum flap extended speed (the upper limit of the white arc). The entire white arc defines the flap operating range.
- **V_{S1}** — the stall speed or minimum steady flight speed in a specified configuration (the lower limit of the green arc). The entire green arc defines the normal operating range.
- **V_{NO}** — the maximum structural cruising speed (the upper limit of the green arc and lower limit of the yellow arc). The yellow arc defines the caution range, which should be avoided unless in smooth air.
- **V_{NE}** — never exceed speed (the upper limit of the yellow arc) marked in red.

There are other important airspeed limitations that are not color-coded on the airspeed indicator:

- **V_{LE}** — the maximum landing gear extended speed.
- **V_{A}** — the design maneuvering speed. If rough air or severe turbulence is encountered, airspeed should be reduced to maneuvering speed or less to minimize stress on the airplane structure.
- **V_{V}** — the best rate-of-climb speed (the airspeed that will result in the most altitude in a given period of time).
- **V_{X}** — the best angle-of-climb speed (the airspeed that will result in the most altitude in a given distance).

Answers

3247 [B] 3262 [C]
AIR, GLI, RTC, WSC
3006. Which V-speed represents maneuvering speed?
A— V_A.
B— V_{LO}.
C— V_{NE}.

V_A is design maneuvering speed. *(PLT506) — 14 CFR §1.2*
Answer (B) is incorrect because this is the maximum landing gear operating speed. Answer (C) is incorrect because this is the never exceed speed.

AIR, GLI, RTC, WSC
3264. What does the red line on an airspeed indicator represent?
A— Maneuvering speed.
B— Turbulent or rough-air speed.
C— Never-exceed speed.

The upper end of the arc is marked by a red radial line which is the never-exceed speed (V_{NE}). *(PLT132) — FAA-H-8083-25*
Answers (A) and (B) are incorrect because the maneuvering speed and turbulent or rough-air speed is not indicated on the airspeed indicator.

AIR, GLI, RTC, WSC
3268. (Refer to Figure 4.) Which color identifies the never-exceed speed?
A— Upper limit of the green arc.
B— Upper limit of the white arc.
C— The red radial line.

The upper end of the arc is marked by a red radial line which is the never-exceed speed (V_{NE}). *(PLT088) — FAA-H-8083-25*
Answer (A) is incorrect because the upper limit of the green arc is the beginning of the caution range. Answer (B) is incorrect because the upper limit of the white arc is the maximum speed at which flaps may be extended.

AIR, WSC
3269. (Refer to Figure 4.) Which color identifies the power-off stalling speed in a specified configuration?
A— Upper limit of the green arc.
B— Upper limit of the white arc.
C— Lower limit of the green arc.

The green arc is the normal operating range. The lower end of the arc (V_S) is the stalling speed in a specified configuration. *(PLT088) — FAA-H-8083-25*
Answer (A) is incorrect because the upper limit of the green arc indicates the maximum structural cruising speed. Answer (B) is incorrect because the upper limit of the white arc is the maximum flaps-extended speed.

AIR, WSC, PPC
3011. Which would provide the greatest gain in altitude in the shortest distance during climb after takeoff?
A— V_Y.
B— V_A.
C— V_X.

V_X (best angle) is the calibrated airspeed at which the aircraft will attain the highest altitude in a given horizontal distance. *(PLT123) — 14 CFR §1.2*
Answer (A) is incorrect because V_Y is best rate of climb. Answer (B) is incorrect because V_A is design maneuvering speed.

Answers

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
AIR, WSC
3012-1. After takeoff, which airspeed would the pilot use to gain the most altitude in a given period of time?
A— Vy.
B— Vx.
C— Va.

Vy (best rate) is the calibrated airspeed at which the airplane will obtain the maximum increase in altitude per unit of time (feet per minute) after takeoff. (PLT123) — 14 CFR §1.2

Answer (B) is incorrect because Vx is the best angle of climb. Answer (C) is incorrect because Va is the design maneuvering speed.

AIR 3265. (Refer to Figure 4.) What is the full flap operating range for the airplane?
A— 55 to 100 knots.
B— 55 to 208 knots.
C— 55 to 165 knots.

The flap operating range is marked by the white arc. The low end is Vso (stall speed in a landing configuration), and the high end is Vfe (maximum flap extended speed). (PLT088) — FAA-H-8083-25

Answer (B) is incorrect because 55 to 208 knots is the entire operating range of this airplane, from the stall speed to the never-exceed speed. Answer (C) is incorrect because 55 to 165 knots is the normal operating range for this airplane (green arc).

AIR 3267. (Refer to Figure 4.) The maximum speed at which the airplane can be operated in smooth air is
A— 100 knots.
B— 165 knots.
C— 208 knots.

The caution range (yellow arc) includes speeds which should only be flown in smooth air; the maximum speed in the caution range is 208 knots for this airplane. (PLT088) — FAA-H-8083-25

Answer (A) is incorrect because 100 knots is the upper limit of the white arc, which is the maximum flaps-extended speed. Answer (B) is incorrect because 165 knots is the upper limit of the green arc, which is the maximum structural cruising speed.

AIR 3270. (Refer to Figure 4.) What is the maximum flaps-extended speed?
A— 65 knots.
B— 100 knots.
C— 165 knots.

The flap operating range is marked by the white arc. The high end is Vfe (maximum flap extended speed), which is 100 knots for this airplane. (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because 65 knots is the lower limit of the green arc, which is the power-off stall speed, Vs1. Answer (C) is incorrect because 165 knots is the upper limit of the green arc, which is Vno.

AIR 3271. (Refer to Figure 4.) Which color identifies the normal flap operating range?
A— The yellow arc.
B— The green arc.
C— The white arc.

The flap operating range is marked by the white arc. The low end is Vso (stall speed in a landing configuration), and the high end is Vfe (maximum flap extended speed). (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because the yellow arc is the caution range. Answer (B) is incorrect because the green arc indicates the normal operating range.

AIR 3272. (Refer to Figure 4.) Which color identifies the power-off stalling speed with wing flaps and landing gear in the landing configuration?
A— Upper limit of the green arc.
B— Upper limit of the white arc.
C— Lower limit of the white arc.

The flap operating range is marked by the white arc. The low end is Vso (stall speed in a landing configuration). (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because the upper limit of the green arc is Vno. Answer (B) is incorrect because the upper limit of the white arc is Vfe.

Answers
AIR, WSC 3273. (Refer to Figure 4.) What is the maximum structural cruising speed?
A— 100 knots.
B— 165 knots.
C— 208 knots.

The green arc is the normal operating range. The upper end of the arc (VNO) is defined as the “maximum structural cruising speed.” (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because 100 MPH is the upper limit of the white arc, which is the maximum flaps extended speed. Answer (C) is incorrect because 208 knots is the never-exceed speed.

AIR, WSC 3274. What is an important airspeed limitation that is not color coded on airspeed indicators?
A— Never-exceed speed.
B— Maximum structural cruising speed.
C— Maneuvering speed.

Maneuvering speed (VA) is not displayed on the airspeed indicator. (PLT278) — FAA-H-8083-25
Answer (A) is incorrect because the never-exceed speed is indicated by a red line on the airspeed indicator. Answer (B) is incorrect because the maximum structural cruising speed can be found on the airspeed indicator by the upper limit of the green arc.

AIR, GLI 3007. Which V-speed represents maximum flap extended speed?
A— VFE.
B— VLOF.
C— VFC.

VFE is the highest calibrated airspeed permissible with the wing flaps in a prescribed extended position. (PLT506) — 14 CFR §1.2
Answer (B) is incorrect because this is VLO. Answer (C) is incorrect because this is VFC.

AIR, GLI 3008. Which V-speed represents maximum landing gear extended speed?
A— VLE.
B— VLO.
C— VFE.

The caution range (yellow arc) includes speeds which should only be flown in smooth air, and is 165 to 208 knots for this airplane. (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because 0 to 60 knots is less than stall speed. Answer (B) is incorrect because 100 to 165 knots is the normal operating airspeed range from maximum flap extension speed to maximum structural cruising speed, the upper limit of the green arc and lower limit of the yellow arc.

AIR, WSC 3266. (Refer to Figure 4.) What is the caution range of the airplane?
A— 0 to 60 knots.
B— 100 to 165 knots.
C— 165 to 208 knots.

VLE is the maximum calibrated airspeed at which the airplane can be safely flown with the landing gear extended. (PLT506) — 14 CFR §1.2
Answer (B) is incorrect because VLO is maximum landing gear operating speed. Answer (C) is incorrect because VFE is maximum flap extended speed.

AIR, GLI 3009. VNO is defined as the
A— normal operating range.
B— never-exceed speed.
C— maximum structural cruising speed.

VNO is the maximum calibrated airspeed for normal operation, or the maximum structural cruising speed. (PLT506) — 14 CFR §1.2
Answer (A) is incorrect because this is not designated a V-speed; but rather it is the green arc on the airspeed indicator. Answer (B) is incorrect because this is VNE.

AIR, GLI 3010. VS0 is defined as the
A— stalling speed or minimum steady flight speed in the landing configuration.
B— stalling speed or minimum steady flight speed in a specified configuration.
C— stalling speed or minimum takeoff safety speed.

VS0 is the calibrated power-off stalling speed or the minimum steady-flight speed at which the aircraft is controllable in the landing configuration. (PLT506) — 14 CFR §1.2
Answer (B) is incorrect because this is VS1. Answer (C) is incorrect because VS is stalling speed, and V2 is the minimum takeoff safety speed.

AIR, GLI, WSC 3007. Which V-speed represents maximum flap extended speed?
A— VFE.
B— VLOF.
C— VFC.

VFE is the highest calibrated airspeed permissible with the wing flaps in a prescribed extended position. (PLT506) — 14 CFR §1.2
Answer (B) is incorrect because this is VLO. Answer (C) is incorrect because this is VFC.

AIR, GLI, WSC 3008. Which V-speed represents maximum landing gear extended speed?
A— VLE.
B— VLO.
C— VFE.

The caution range (yellow arc) includes speeds which should only be flown in smooth air, and is 165 to 208 knots for this airplane. (PLT088) — FAA-H-8083-25
Answer (A) is incorrect because 0 to 60 knots is less than stall speed. Answer (B) is incorrect because 100 to 165 knots is the normal operating airspeed range from maximum flap extension speed to maximum structural cruising speed, the upper limit of the green arc and lower limit of the yellow arc.

Answers
3266 [C]