Aviation Maintenance
Technician Series

Powerplant
Fourth Edition

DALE CRANE

T. DAVID SCROGGINS
Technical Editor
PROFESSOR OF APPLIED AVIATION SCIENCES
COLLEGE OF AVIATION
LETOURNEAU UNIVERSITY

Aviation Supplies & Academics, Inc.
NEWCASTLE, WASHINGTON
CONTENTS

Preface to the Fourth Edition v
About the Author and Editors vii
Acknowledgements ix

1 Development of Aircraft Powerplants 1

Reciprocating Engines
2 Theory & Construction 17
3 Lubrication Systems 93
4 Fuel Metering & Induction Systems 125
5 Ignition Systems 205
6 Exhaust Systems 255
7 Cooling Systems 269
8 Starting Systems 279
9 Operation & Maintenance 291

Turbine Engines
10 Theory & Construction 355
11 Lubrication & Cooling Systems 435
12 Fuel Metering Systems 465
13 Ignition & Starting Systems 493
14 Exhaust Systems 515
15 Operation & Maintenance 527

Powerplant Auxiliary Systems
16 Instrument Systems 555
17 Electrical Systems 593
18 Fire Protection Systems 641
19 Propellers 663

Glossary 739
Index 775
Aviation maintenance is a profession requiring a broad spectrum of skills and knowledge that is constantly evolving as new technologies are introduced. Technicians today need a solid foundation of mechanics, physics, electricity, electronics and logic, in addition to the information unique to aircraft maintenance and construction. The training material in the *Aviation Maintenance Technician Series* is chosen to reflect today’s required knowledge for the aviation maintenance technician. This material comes from a combination of both personal experience and research. Like previous editions, this *Powerplant* textbook, along with the other ASA maintenance volumes, endeavors to meet the needs of today’s technicians.

ASA is dedicated to providing easy to understand training materials for the AMT certificate applicant. The chapters are carefully chosen to reflect FAA requirements, while the arrangement of information is intended to lend itself to a Part 147 curriculum. This arrangement also provides a logical flow of information that enhances individual learning. Therefore, the AMT Series textbooks contribute to the knowledge necessary for the building of well-rounded aircraft technicians, who will not only be equipped to understand the workings of aircraft systems, but will have the skills to repair, service, inspect, and troubleshoot them.

Additional recommended study materials would include such material as the FAA’s *Aviation Maintenance Technician Handbook—General* (FAA-H-8083-30), —*Airframe* (FAA-H-8083-31), and —*Powerplant* (FAA-H-8083-32), also available from ASA. ASA provides the best collection of AMT-related federal aviation regulation reprints in *FAR for Aviation Maintenance Technicians*, printed yearly and provided with periodic updates on the ASA website (www.asa2fly.com). For those who are preparing to take their FAA exams, ASA’s Test Guides are an invaluable tool to test your knowledge of aircraft maintenance.

Finally, we in aviation build on the legacy of the people who came before us as pioneers. That was true for the early experimenters trying to get off the ground for the first time just as it is true for today’s mechanics, engineers, and pilots who are building and operating jumbo jets. The principle of building on the legacy of others is certainly true with this textbook—Dale Crane was the author of many of the ASA texts. Many students over the years came to trust Dale’s authorship to not only inform, but to do so in an accurate, concise, and straight-forward manner.

Continued
Later, technical editors carried on that tradition by updating the book as aviation technology continued to evolve. The current technical editor never had the opportunity to study directly under Mr. Crane but many of his mentors and friends began their careers in aviation as Mr. Crane’s students. Therefore, the current technical editor benefits heavily from Mr. Crane’s knowledge and ability. It is the goal of this editor to carry on in the tradition of quality and clarity that Dale Crane established.

T. David Scroggins

Technical Editor for the Fourth Edition
Dale Crane (1923 – 2010) was involved in aviation for more than 50 years. He began his career in the U.S. Navy as a mechanic and flight engineer in PBYs. After World War II, he attended Parks Air College. After college, he worked as an instrument overhaul mechanic, instrument shop manager, and flight test instrumentation engineer. Later he became an instructor and then director of an aviation maintenance school. Dale was active as a writer of aviation technical materials, and as a consultant in developing aviation training programs. ATEC presented to Dale Crane their special recognition award for “his contribution to the development of aviation technicians as a prolific author of specialized maintenance publications.” He also received the FAA’s Charles Taylor “Master Mechanic” award for his years of service in and contributions to the aviation maintenance industry, and the recognition of his peers for excellence as a leader and educator in aircraft maintenance, and aviation safety advocate.

T. David Scroggins, technical editor for the Fourth Edition, is a Professor of Applied Aviation Science in the College of Aviation at LeTourneau University. He studied in Moody Bible Institute’s Aviation program obtaining his Bachelor of Science in Missionary Aviation Technology; after earning his Mechanic’s certificate in 1981, David worked in several general aviation maintenance jobs in the U.S. and overseas. He started teaching at LeTourneau University in 1992; in 1996 he earned his Master of Science Degree in Technology from the University of Texas at Tyler. At LeTourneau David teaches courses in Reciprocating Engines, Turbine Engines, Propellers and Instrument Systems. He currently holds an Airframe and Powerplant Mechanic certificate, a Commercial Pilot Certificate and a Mechanic Examiner’s Designation.

Technical editors for the previous editions were Pat Benton, Western Michigan University, and Terry Michmerhuizen, Cornerstone College (First and Second Editions); Jerry Lee Foulk, LeTourneau University (Second and Third Editions).
ACKNOWLEDGEMENTS

A series of texts such as this Aviation Maintenance Technician Series could never be compiled without the assistance of modern industry. Many individuals have been personally helpful, and many companies have been generous with their information. We want to acknowledge this and say thank you to them all.

ACES Systems—TEC Aviation Division, Knoxville, TN
Aero Quality International, Stamford, CT
Aero-Mach Labs, Inc., Wichita, KS
Aeroquip Corporation, Jackson, MI
Airborne Division, Parker Hanniflin Corporation, Elyria, OH
Allied Signal Aerospace, Phoenix, AZ
Allison Engine Company, Indianapolis, IN
 ASCO Aeronautical, Columbus, OH
Aviation Laboratories, Inc., Houston, TX
Barfield, Inc., Atlanta, GA
Beech Aircraft Corporation, Wichita, KS
Bendix Electrical Components Division, Sidney, NY
Cessna Aircraft Company, Wichita, KS
Chadwick-Helmuth Company, Inc., El Monte, CA
Champion Aviation Products Division, Liberty, SC
Continental Motors Group, Mobile, AL
Dowty-Rotol, Inc., Cheltenham, England
Dynamic Solutions Systems, Inc., San Marcos, CA
Engine Components, Inc., San Antonio, TX
General Electric Company, Cincinnati, OH
Gulfstream Aerospace, Savannah, GA
Hamilton Standard Division of United Technologies, Windsor Locks, CT
Howell Instruments, Inc., Fort Worth, TX
Machida Incorporated, Orangeburg, NY
McCaughey Accessory Division Cessna Aircraft Company, Vandalia, OH
Milbar Corporation, Chagrin Falls, OH
NASA Lewis Research Center, Cleveland, OH
Pratt & Whitney Canada, Longueuil, Quebec, Canada
Precision Airmotive Corporation, Everett, WA
Quan-Tech, Flanders, NJ
Ram Aircraft Corporation, Waco, TX
Saft America, Inc., Valdosta, GA
Slick Aircraft Products, Division of Unison, Rockford, IL
Standard Aero, Winnipeg, Manitoba, Canada
Stanley-Proto Industrial Tools, Covington, GA
Stead Aviation Corporation, Manchester, NH
Sundstrand Corp., Rockford, IL
Superior Air Parts, Inc., Addison, TX
Textron Lycoming, Williamsport, PA
TRW Hartzell Propeller Products Division, Piqua, OH
T.W. Smith Engine Company, Inc., Cincinnati, OH
UE Systems, Inc., Elmsford, NY
United Technologies, Pratt & Whitney, East Hartford, CT
Welch Allyn Imaging Products Division, Skaneateles Falls, NY
The Principle of Heat Engines 3
 External-Combustion Engines 3
 Internal-Combustion Engines 4

Aircraft Reciprocating Engines 4

Aircraft Turbine Engines 8

Electrically Powered Engines 11

Study Questions: Development of Aircraft Powerplants 13

Answers to Chapter 1 Study Questions 14
The first man-carrying flights were made in hot air balloons swept along by air currents and without means for the pilot to control the direction of flight. Aircraft had little practical utility until the development of engine-driven propellers. This development of the powerplant has made aviation the vital factor that it is today in the economic world.

The Principle of Heat Engines

All powered aircraft are driven by some form of heat engine. Chemical energy stored in the fuel is released as heat energy that causes air to expand. The expansion of this air is what performs useful work, driving either a piston or a turbine.

There are two basic types of heat engines: external-combustion and internal-combustion.

External-Combustion Engines

External-combustion engines are most familiar to us as steam engines. Energy released in coal- or gas-fired furnaces or in nuclear reactors is transferred into water, changing it into steam that expands and drives either a piston or a turbine.

Steam engines were used to power experiments in flight made during the late 1800s. Dr. Samuel Langley of the Smithsonian Institution in Washington, D.C. used small steam engines to power a successful series of unmanned machines he called Aerodromes. In 1896, Dr. Langley made a number of powered flights with these models. The most successful had tandem wings with a span of 14 feet, weighed 26 pounds, and was powered by a one-horsepower steam engine. It was launched from a catapult atop a houseboat on the Potomac river, and flew for 90 seconds, traveling more than half a mile.

There was one successful but impractical aircraft steam engine developed in America in 1933 by the Besler brothers, manufacturers of logging locomotives. This 150-horsepower engine, using an oil-fired boiler and having a total installed weight of approximately 500 pounds, was used to power a Travel Air 2000 biplane.

powerplant. The complete installation of an aircraft engine, propeller, and all accessories needed for its proper function.

heat engine. A mechanical device that converts chemical energy in a fuel into heat energy, and then into mechanical energy.

internal-combustion engine. A form of heat engine in which the fuel and air mixture is burned inside the engine.

external-combustion engine. A form of heat engine in which the fuel releases its energy outside of the engine.

piston. The movable plug inside the cylinder of a reciprocating engine.

turbine. A wheel fitted with vanes or airfoils radiating out from a central disk. Used to extract energy from a stream of moving fluid.

Aerodrome. The name given by Dr. Samuel Langley to the flying machines built under his supervision between the years of 1891 and 1903.
Internal-Combustion Engines

The concept of releasing energy from fuel directly inside an engine to heat and expand the air has challenged engineers since the late 1700s. The expanding air can drive reciprocating pistons or spin turbines.

Coal dust, gunpowder, and even turpentine vapors have been exploded inside cylinders, but it was not until 1860 that the French engineer Etienne Lenoir actually built a practical engine that could use illuminating gas as its fuel.

In 1876, Dr. Nikolaus Otto of Germany made practical engines using the four-stroke cycle that bears his name, and it is the principal cycle upon which almost all aircraft reciprocating engines operate. This cycle of energy transformation is discussed in detail in Chapter 2.

Gas turbine engines in the form of turbojet, turbofan, turboprop, and turboshaft engines have revolutionized aviation, and their principle of operation is discussed in Chapter 10.

Aircraft Reciprocating Engines

Throughout the history of aviation, progress has always been dependent upon the development of suitable powerplants.

Aviation as we know it today was born at the beginning of the 1900s with powered flights made by Wilbur and Orville Wright. The Wright brothers approached the problems of flight in a sensible and professional way. They first solved the problem of lift with kites, then the problem of control with gliders, and finally by 1902, they were ready for powered flight. First they painstakingly designed the propellers and then began their search for a suitable engine. Their requirements were for a gasoline engine that would develop 8 or 9 brake horsepower and weigh no more than 180 pounds. No manufacturer had such an engine available, and none were willing to develop one for them. Their only recourse was to design and build it on their own.

The engine, built to their design by Mr. Charles Taylor, had four cylinders in-line and lay on its side. It drove two 8 1/2-foot-long wooden propellers through chain drives and developed between 12 and 16 horsepower when it turned at 1,090 RPM. It weighed 179 pounds.

On December 17, 1903, this engine powered the Wright Flyer on its historic flight of 59 seconds, covering a distance of 852 feet on the wind-swept sand at Kitty Hawk, North Carolina.

Because of Dr. Langley’s success with his Aerodromes, the U.S. government gave him a contract to build a full-scale man-carrying machine. The steam engines used in the models could not be effectively scaled up to power this aircraft, so a better means of propulsion had to be found.

Charles Manly, Dr. Langley’s assistant, searched without success, both in the United States and Europe, for a suitable powerplant. The best he found was a three-cylinder rotary radial automobile engine built by Stephen Balzer.
in New York. This engine was not directly adaptable to the Aerodrome, but Manly, building upon Balzer’s work, constructed a suitable engine for it. The Manly-Balzer engine was a five-cylinder, water-cooled static radial engine that produced 52.4 horsepower at 950 RPM and weighed 207.5 pounds complete with water.

On October 7, 1903, the full-scale Aerodrome with Manly as the pilot was launched from atop the houseboat. As the aircraft neared the end of the catapult, it snagged part of the launching mechanism and was dumped into the river. But Manly’s engine, which was far ahead of its time, functioned properly and was in no way responsible for the failure of the Aerodrome to achieve powered flight.

Glenn Curtiss was a successful motorcycle builder and racer from western New York state. The use of one of his motorcycle engines in a dirigible in 1907 got Curtiss interested in aviation, and as a result, he became involved in furnishing the powerplants for Dr. Alexander Graham Bell’s Aerial Experiment Association. A number of successful aircraft, including the first aircraft to fly in Canada, came from this group.

Curtiss’s own company designed and built some of the most important engines in America in the periods before and during World War I and up until 1929, when the Curtiss Aeroplane and Motor Corporation merged with the Wright Aeronautical Corporation to form the giant Curtiss-Wright Corporation.

World War I, between 1914 and 1918, was a time of rapid growth in aviation. The British, French, Germans, and Americans all developed aero engines.

One of the most popular configuration of engines built in this era was the rotary radial engine. With this engine, the crankshaft was attached rigidly to the airframe, and the propeller, crankcase, and cylinders all spun around. Clerget, Gnome, and Rhone in France, Bentley in Britain, Thulin in Sweden, and Oberursel, BMW, Goebel, and Siemens-Halske in Germany all built rotary radial engines. These engines had 5, 7, 9, 11, or 14 cylinders and produced between 80 and 230 horsepower.

The Germans used some very efficient 6-cylinder in-line water-cooled engines built by the Mercedes, Maybach, BMW, Benz, and Austro-Daimler companies. Some of these engines developed up to 300 hp.

Some of the most popular V-8 engines of this time were the French-built 150- to 300-horsepower Hispano-Suizas. These engines were also built under license agreements in Great Britain and the United States.

There were only two aircraft engines designed and built in quantities in the United States during this time, and both were V-engines. Glenn Curtiss’s Company built the 90-horsepower, water-cooled V-8 Curtiss OX-5 engine in great numbers, and various automobile manufacturers built the 400-horsepower water-cooled V-12 Liberty engine.
The years between World Wars I and II are called the golden years of aviation because of the tremendous strides made during this era. Powerplant development was largely responsible for this progress.

At the end of hostilities in 1918, the aviation market was flooded with surplus Curtiss Jennies and Standard J-1s, with their Curtiss OX-5 engines and DeHaviland DH-4 airplanes with Liberty V-12 engines. These airplanes and engines, while limited in utility, were so abundant and cheap that manufacturers were discouraged from developing new engines until these were used up.

Aviation did not become a viable form of transportation until a dependable engine was developed. Beginning in about 1923, Charles Lawrance built a 9-cylinder radial engine that was developed by the Wright Aeronautical Corporation into their famous Whirlwind series of engines, the most famous of which was the 220-horsepower Wright J-5. This is the engine that powered Charles Lindbergh’s Spirit of St. Louis on its successful 33-hour nonstop flight from New York to Paris in May of 1927. About two weeks later, Clarence Chamberlain, flying a Bellanca, also powered by a Wright J-5 engine, flew nonstop from New York to Germany in 43 hours. Small 3-, 5-, and 7-cylinder radial engines powered the light airplanes of the 1930s and 1940s, and 7-, 9-, and 14-cylinder radial engines powered the faster private and business airplanes, as well as military and airline aircraft.

During World War II the radial engine was the most popular configuration in the United States. Some fighter airplanes used liquid-cooled V-12 engines, but most aircraft were powered by 9-, 14-, and 18-cylinder radial engines, and by the end of the war, by a popular 28-cylinder engine.

The point of diminishing returns in reciprocating engine development was reached during World War II by the Lycoming XR-7755, a 5,000-horsepower 36-cylinder liquid-cooled radial engine. Fortunately the gas-turbine engine became functional at about this time.

Horizontally opposed engines first became popular as powerplants for very light aircraft in 2- and 4-cylinder models of less than 40 horsepower. This configuration has the advantage of smooth operation, small frontal area, light weight, and dependability. Because of these characteristics, they have been widely produced with 4-, 6-, and even 8-cylinders, with power output of up to 520 horsepower or more.

After World War II, horizontally opposed engines replaced radial engines for almost all reciprocating engine-powered private airplanes. Recently, however, there have been a several in-line and V-configured diesel engines marketed.
Private aviation in the United States has undergone drastic changes since the 1960s. The cost of private aircraft ownership skyrocketed because of the proliferation of product liability lawsuits, and commercial manufacturers virtually stopped producing reciprocating-engine-powered private aircraft in the 1980s. By the mid 1990s, changes in tort reform laws encouraged some manufacturers to re-enter the private aircraft field.

The amateur-built or homebuilt aircraft movement originally began because people wanted to build and fly ultra-simple aircraft without complex tooling, at minimum of cost. Today there are still some very basic designs yet there are also a number of homebuilt aircraft on the cutting edge of technology, costing hundreds of thousands of dollars. Freedom from some of the FAA constraints under which production aircraft are built and the accompanying reduction of the threat of product liability lawsuits allow private builders to exploit the limitless advantages of composite construction.

Amateur-built aircraft do not require FAA-certificated engines, and as a result, there is a strong movement in the conversion of automobile engines for aircraft use. Some converted automobile engines are truly state-of-the-art powerplants, with electronic ignition and fuel injection. The safety record for these engines is excellent, and it is quite possible that this will continue to be a viable means of developing engines for private aircraft in the future.

As aviation begins its second century, the gasoline reciprocating engine, in spite of its inefficiency, continues to be used, but not without competition. Practically all airline and military aircraft are turbine powered and will continue to be.

Air-cooled, horizontally-opposed gasoline engines will continue to dominate the piston-powered aircraft market for the foreseeable future. There have been, and continue to be, inroads made to develop more fuel-efficient powerplants, but none have risen to the forefront in any significant way to unseat the gasoline-fired mainstay. Some of the ongoing innovations include liquid-cooled gasoline engines, compression-ignition (CI) engines, rotating combustion (RC) engines developed from the Wankel engine, and cam (as opposed to crankshaft) engines.

The most significant of these improved engines has been the compression-ignition engine, better known as the diesel engine. The diesel or CI engine is about 10% to 15% more fuel efficient than the gasoline engine. This could be a significant savings if that were the only consideration, but the CI engine is considerably heavier than the gasoline-fired engine. This aspect in itself produces considerable inefficiencies when cost per mile is concerned; the search for ideas for more efficient piston engine power therefore continues.

amateur-built aircraft. Aircraft built by individuals as a hobby rather than by factories as commercial products. Amateur-built or homebuilt aircraft do not fall under the stringent requirements imposed by the FAA on commercially built aircraft.

rotating combustion (RC) engine. A form of internal combustion engine in which a rounded, triangular-shaped rotor with sliding seals at the apexes forms the combustion space inside an hourglass-shaped chamber. Expanding gases from the burning fuel-air mixture push the rotor around and turn a geared drive shaft in its center. The RC engine was conceived in Germany by Felix Wankel in 1955.
Figure 1-2 highlights the progress made in aircraft reciprocating engines. In only 40 years, engines progressed from almost 15 pounds per horsepower to slightly less than one pound per horsepower.

<table>
<thead>
<tr>
<th>Manufacturer and Name</th>
<th>Year</th>
<th>Configuration</th>
<th>H.P.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Flyer</td>
<td>1903</td>
<td>4 I L</td>
<td>12-16</td>
<td>179</td>
</tr>
<tr>
<td>Manly-Balzer</td>
<td>1903</td>
<td>5 R L</td>
<td>52.4</td>
<td>207</td>
</tr>
<tr>
<td>Curtiss OX-5</td>
<td>1910</td>
<td>8 V L</td>
<td>90</td>
<td>400</td>
</tr>
<tr>
<td>Le Rhone J</td>
<td>1916</td>
<td>9 Ro A</td>
<td>120</td>
<td>323</td>
</tr>
<tr>
<td>Liberty V-12</td>
<td>1918</td>
<td>12 V L</td>
<td>400</td>
<td>900</td>
</tr>
<tr>
<td>Wright J-5</td>
<td>1925</td>
<td>9 R A</td>
<td>220</td>
<td>510</td>
</tr>
<tr>
<td>Pratt & Whitney R-1830</td>
<td>1932</td>
<td>14 R A</td>
<td>1,200</td>
<td>1,467</td>
</tr>
<tr>
<td>Wright Turbocompound</td>
<td>1940</td>
<td>18 R A</td>
<td>3,700</td>
<td>2,779</td>
</tr>
<tr>
<td>Pratt & Whitney R-4360</td>
<td>1943</td>
<td>28 R A</td>
<td>4,300</td>
<td>3,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engines for Private Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental A-65</td>
</tr>
<tr>
<td>Lycoming TIGO-541</td>
</tr>
</tbody>
</table>

I = Inline, R = Radial, V = V, Ro = Rotary, O = Horizontally opposed, L = Liquid cooled, A = Aircooled

Aircraft Turbine Engines

The principle of using a turbine as a source of power has been known for more than 400 years, since the days of Leonardo da Vinci. Wind-driven turbines in the form of windmills have converted much of the arid wasteland in the western United States into profitable farms and ranches.

Water-driven turbines are used to generate electricity in the huge hydroelectric powerplants, and steam turbines are used to drive electrical generators and propel ocean-going ships.

The first practical use of turbines in aviation was the turbosupercharger developed by Dr. Sanford Moss during World War I. A turbine spun by exhaust gases leaving the engine drove a centrifugal compressor that increased the pressure of the air entering the cylinders. Turbosuperchargers allow reciprocating engines to maintain their sea-level power to a high altitude.

The gas-turbine engine is a logical progression from a turbosupercharger. A combustion chamber is placed between the turbine wheel and the compressor. Air from the compressor flows through the combustion chamber where fuel is added and burned. The expanding gases drive the turbine, which in turn drives the compressor. Though the compressor requires a tremendous amount of power, the turbine produces enough, with some left over for torque or thrust.

turbosupercharger. A centrifugal air compressor driven by exhaust gases flowing through a turbine. The compressed air is used to increase the power produced by a reciprocating engine at altitude.

centrifugal compressor. An air compressor that uses a scroll-type impeller. Air is taken into the center of the impeller and slung outward by centrifugal force into a diffuser where its velocity is decreased and its pressure is increased.
In 1929, Frank Whittle, a brilliant young pilot-officer in the British Royal Air Force, filed a patent for a turbojet airplane engine. Unfortunately, Whittle’s genius was not appreciated, and it was not until 1937 that his first jet engine actually ran.

Some scientists in the British Air Ministry were interested in gas-turbine engines, but thought of them only as a source of power to drive propellers. A propeller produces thrust by delivering a small change in momentum to a large mass of air, but Whittle’s concept was that thrust could be produced by a jet engine delivering a far larger change in momentum to a much smaller mass of air. The thrust produced by a turbojet would increase as the aircraft flew faster and would be efficient at high altitude.

Whittle’s engine used a turbine-driven centrifugal compressor to move a large mass of air through the engine. Fuel was sprayed into the fast moving air and burned, expanding it and accelerating it enough to produce useful thrust.

The turbojet engine came about at exactly the correct time. In spite of the lack of interest by the British government, Frank Whittle and his small but devoted crew at Power Jets, Ltd., proved the feasibility of the turbojet engine. In October of 1941, The General Electric Company was licensed to build the Whittle engine in the United States. GE was chosen for two reasons: because of their experience with turbosuperchargers, and because the two primary aircraft engine manufacturers, Pratt & Whitney and Wright Aeronautical, had more than they could handle in the continued development of reciprocating engines that were so desperately needed for the war which, at that time, appeared imminent.

The technology of turbojet engines was so new and the world was so deeply involved in the war, that no great strides in turbine engine development were made until the war was over.

At the end of the war, many reciprocating engines were declared surplus and sold for such low prices that there was little incentive for manufacturers to design and build new reciprocating engines. The gas turbine engine showed so much promise that neither Pratt & Whitney nor Wright Aeronautical felt it wise to continue developing reciprocating engines. Pratt & Whitney transitioned heavily into turbine engines, but Wright Aeronautical did not develop any of their own. They did produce some British engines under license but soon departed entirely from aviation engines.

Turbine engines have a far greater versatility than reciprocating engines because they can be operated either as a thrust or torque producer. Turbojet and turbofan engines produce thrust by accelerating a mass of air. Turboprop and turboshift engines produce torque to drive propellers or helicopter rotors, or generators and air compressors for auxiliary power units.

torque. A force that produces or tries to produce rotation.

thrust. The aerodynamic force produced by a propeller or turbojet engine as it forces a mass of air to the rear, behind the aircraft.

A propeller produces its thrust by accelerating a large mass of air by a relatively small amount. A turbojet engine produces its thrust by accelerating a smaller mass of air by a much larger amount.
power. The time rate of doing work. Power is found by dividing the amount of work done, measured in foot-pounds, by the time in seconds or minutes used to do the work.

Power may be expressed in foot-pounds of work per minute or in horsepower. One horsepower is 33,000 foot-pounds of work done in one minute, or 550 foot-pounds of work done in one second.

thrust horsepower. The horsepower equivalent of the thrust produced by a turbojet engine. Thrust horsepower is found by multiplying the net thrust of the engine, measured in pounds, by the speed of the aircraft, measured in miles per hour, and then dividing this by 375.

There is no direct comparison between turbine engines and reciprocating engines that allows us to visualize the tremendous strides that have been made in aircraft propulsion systems, but we can convert thrust into thrust horsepower and make a power-to-weight comparison.

Power requires movement, so thrust horsepower must take into consideration the speed of the aircraft. Thrust horsepower is found by multiplying the net thrust of the engine measured in pounds, by the speed of the aircraft measured in miles per hour, then dividing this by 375.

\[
\text{Thrust horsepower} = \frac{\text{Net thrust (pounds)} \cdot \text{Aircraft speed (miles per hour)}}{375 \text{ mile-pound / hour}}
\]

The Pratt & Whitney R-1830 engine used in the ubiquitous Douglas DC-3 weighed approximately 1,500 pounds and produced 1,200 brake horsepower for takeoff. This is a power-to-weight ratio of 0.8 horsepower per pound, which is still an acceptable ratio for reciprocating engines.

The Pratt & Whitney JT9D that powers the Boeing 747 weighs approximately 9,000 pounds and produces up to 56,000 pounds of thrust, which at a cruise speed of 550 miles per hour, gives a little over 82,000 thrust horsepower. This is a power-to-weight ratio of a little more than 9 horsepower per pound!

It is easy to see the advantage that turbine engines have over reciprocating engines by comparing two popular torque-producing engines of the same basic power and used in the same types of aircraft. The Pratt & Whitney R-1830 reciprocating engine powers the 21-passenger Douglas DC-3, and the Pratt & Whitney of Canada PT-6 turboprop engine powers the 19-passenger Beech 1900D airliner. The power-to-weight ratio of the turboprop engine is 3.5 times as high as that of the reciprocating engine. See Figure 1-3.

Thrust-producing turbine engines have made tremendous progress since their first flight in 1939. Figure 1-4 shows the progress made in a little over fifty years.

Figure 1-3. Horsepower to weight ratio comparison between a reciprocating engine and a turboprop engine of comparable power

<table>
<thead>
<tr>
<th>R-1830 Reciprocating</th>
<th>PT-6 Turboprop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff horsepower</td>
<td>1,200</td>
</tr>
<tr>
<td>Weight</td>
<td>1,500</td>
</tr>
<tr>
<td>Horsepower/weight ratio</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>1,377</td>
</tr>
<tr>
<td></td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
</tr>
</tbody>
</table>

Figure 1-4. Progress in thrust-producing turbine engines

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Mass Airflow pounds/second</th>
<th>Thrust pounds</th>
<th>Weight pounds</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whittle W1</td>
<td>TJ</td>
<td>22</td>
<td>850</td>
<td>623</td>
<td>E. 28/29</td>
</tr>
<tr>
<td>Allison J-33</td>
<td>TJ</td>
<td>90</td>
<td>4,600</td>
<td>1,820</td>
<td>F-80</td>
</tr>
<tr>
<td>P&W JT4</td>
<td>TJ</td>
<td>256</td>
<td>17,500</td>
<td>5,100</td>
<td>B-707</td>
</tr>
<tr>
<td>P&W JT8D</td>
<td>TF</td>
<td>331</td>
<td>17,400</td>
<td>3,500</td>
<td>B-727</td>
</tr>
<tr>
<td>G.E. CF6</td>
<td>TF</td>
<td>1,465</td>
<td>51,000</td>
<td>8,731</td>
<td>DC-10</td>
</tr>
<tr>
<td>RR RB.211</td>
<td>TF</td>
<td>1,658</td>
<td>63,000</td>
<td>9,874</td>
<td>B-747</td>
</tr>
</tbody>
</table>

TJ = Turbojet TF = Turbofan
Turbofan engines have almost completely replaced turbojet engines, and a new generation of ultra-high-bypass engines shows promise of opening a new niche between the turboprop and the turbofan. UHB engines, such as that in Figure 1-5, drive short, multiblade, contrarotating propellers and have high propulsive efficiency, low noise, low thrust specific fuel consumption, and a high power-to-weight ratio.

Figure 1-5. The Unducted Fan™ engine is an ultra-high-bypass turbine engine that promises quiet operation with low fuel consumption at a speed higher than that used by turboprop-powered aircraft.

Electrically Powered Engines

While this book deals primarily with heat engines, in today’s changing world of technology a short discussion of electrically powered flight is appropriate. The idea of using an electric motor as a source of power for flight has been around for quite a few years but was held back by technical challenges. Both the motor and the power source have prevented making electric power a viable alternative in the past.

In recent decades improved motor technology has become available. Several manufacturers have developed electric motors marketed for aviation propulsion. Most of these are limited to Experimental, Ultralight and LSA aircraft. However, this is changing as environmental concerns motivate aircraft manufacturers to find cleaner, quieter ways to fly. Siemens currently

TSFC (thrust specific fuel consumption). A measure of the efficiency of a turbojet or turbofan engine. TSFC is the number of pounds of fuel burned per hour for each pound of thrust produced.
has developed a 260kw (348 hp) electric motor that weighs only about 50 kilograms (110 lbs). This motor, installed in an Extra 300 aerobatic aircraft, has set several electric-powered records.

While motor efficiency has been improving, the greatest challenge is developing a suitable power supply. Yet battery technology has improved immensely; with the introduction of lithium-based batteries, the weight of batteries for a given amount of energy has gone down substantially. For example, one battery manufacturer compares their 100Ah 12V lithium-iron-phosphate technology battery to a lead-acid battery with similar capacity. The lead acid weighs in at 40 kg (88 lbs), while the lithium-iron-phosphate battery weighs only 13.6 kg (30 lbs). Additionally, its life expectancy is such that it can be charged and discharged 8 to 10 times more than a lead-acid battery before it must be retired from service.

While this is a significant improvement over previous power supplies, current battery power limits the flight to a relatively short duration of one to two hours maximum. To extend this time, some research aircraft have covered the upper surfaces of the aircraft with solar cells to charge the battery whenever there is sunlight available. This is, however, expensive and very dependent upon the weather.

One solution to the electricity supply problem is to build a hybrid system similar to what hybrid automobiles utilize. A hybrid system uses a liquid-fueled engine to drive a generator that charges batteries and powers the electric motor. There are a few light aircraft operating today as hybrid systems using piston engines. The batteries supply power to assist the generator during takeoff and climb. Once power is reduced to cruise setting, the generator can maintain the cruise speed and recharge the battery. This allows a smaller engine operating at an efficient speed to power the aircraft.

This idea is promising enough that Airbus, Siemens, and Rolls-Royce are working together in partnership to develop a hybrid regional airliner design. It will use an efficient gas-turbine engine driving a generator to power the propulsion motor. Their goal is to have a technology demonstrator flying by 2020 and a production aircraft operational around 2030. Several other manufacturers are working on similar plans.
STUDY QUESTIONS: DEVELOPMENT OF AIRCRAFT POWERPLANTS

Answers are found at the end of the chapter.

1. The basic name for an engine that produces mechanical energy by changing chemical energy in the fuel into heat is a/an ____________________ engine.

2. Two types of heat engines are:
 a. ______________________________
 b. ______________________________

3. Two types of internal combustion engines used to power modern aircraft are:
 a. ______________________________
 b. ______________________________

4. A reciprocating engine in which the crankshaft is rigidly attached to the airframe and the cylinders spin with the propeller is called a/an ____________________ radial engine.

5. The most popular configuration of reciprocating engine in the United States from the end of World War I through World War II was the ____________________ engine.

6. The most popular configuration of reciprocating engine for private aircraft built in the United States since World War II is the ____________________ engine.

7. The first practical use of a turbine in aircraft propulsion was the ____________________.

8. Aircraft turbine engines are used to produce ____________________ or ____________________.

9. Two types of thrust-producing aircraft turbine engines are:
 a. ______________________________
 b. ______________________________

10. Two types of torque-producing aircraft turbine engines are:
 a. ______________________________
 b. ______________________________

11. The problem that currently limits the use of completely battery-powered electric aircraft is ____________________.

12. A hybrid propulsion system has an electric motor powered by a ____________________ and ____________________.
A

abradable strip411
abradable tip411
absolute pressure31, 366, 558, 562
absolute zero367
AC 43.13-1B728
AC (alternating current)595, 596
ACC (active clearance control)425, 486
acceleration360, 363, 382
acceleration pump150
acceleration system150, 163
acceleration well150
accelerator pump163
accumulator, propeller691, 693
ACES ProBalancer724, 725
acetone249, 252
AC generator controls614
AC generators598, 612
AC motors612
active clearance control (ACC) ...424
ADC (air data computer)486, 588
ADI (antidetonation injection) system183
AD notes303, 315
AD oil96, 102, 103
Advisory Circular 43.13-1B730
eaerolipile359
Aerial Experiment Association ...5
aerodrome3, 5
aerodynamic-blockage reverser520
aerodynamic twisting force (ATF)670, 683
afterburner373, 387, 388, 393, 517, 518, 521, 522
aft fan blades408
air bleed145, 146
air cooling53, 271
aircraft maintenance records303, 310
air filters309
airfoil section668
air-fuel emulsion172
air-fuel mixture ratio129, 132
air impingement starter510
air inlet ducts394
air-oil separator442, 453
airspeed386
air turbine starters506, 507
Airworthiness Directives156, 303
Allison 501 engine430
all-weather spark plug237
Alpha mode700, 701
alternate air control297, 298
alternate air system186
alternate air valves308
alternator303, 309
alternator rotor609
altimeter563
altitude386
altitude engine557
alumel566
aluminum oxide241, 249
amateur-built aircraft7
ambient air394
American Society of Testing Materials (ASTM)101
ammeter299
analog indicator557
angle of attack403, 404, 668, 669
annual inspection301, 303
DC generators621
annular combustor420
annular duct408, 409
annulus148, 150
annunciator panel455, 501, 561
antidetonation characteristics136, 137, 138
antidetonation system (ADI)160
antifreeze469
anti-icing734
anti-icing system310
anti-icing system for propellers735
antiseize compound251
APC (absolute pressure controller)193
API (American Petroleum Institute)100
API gravity100
Approved Type Certificate (ATC)140
APU (auxiliary power unit)422, 439, 506
aramid fibers710
arbors328
arithmetic/logic unit (ALU)584
armature601, 623
armature reaction602, 603, 604
articulating rod88, 89
ashless-dispersant96, 102
ashless-dispersant (AD) oil101
ash test101
asymmetrical loading672
ATF (aerodynamic twisting force)671
atmospheric pressure559
atomizing nozzles476
augmentor tubes261, 274
autofeather system710
autoignition system500, 501
automatic mixture control
(AMC)153, 160, 163, 170
automatic start sequence531
automobile gasoline139
Autosyn system570
auxiliary fuel pump297
auxiliary power units
(APU)439, 510
aviation gasoline137, 138, 467
axial bearing load443
axial-flow air starter508
axial-flow compressors374, 400, 401, 403, 405
axial turbine374

B
back-suction mixture
control152, 153
bacteria468
baffles272
Balzer, Stephen4
barometric pressure563
base-mounted magnetos227
battery contacts287
battery ignition system207, 208
battery maintenance619
battery master switch297, 298
bayonet exhaust stack257
bearing chamber445
bearing compartment453, 454
bearings, plain78
bearing sump445
Beech 1900D10
bell cutout switch654
Bell, Dr. Alexander Graham ...5
bell mouth inlet duct396
Bell XP-59A374
Bendix drive284
benzene138
Bernoulli’s principle144, 261, 363, 364
Beta mode700, 705
Beta operation708
Beta rods708
Beta tube699, 702
Beta valve707, 708, 709
bimetallic hairspring565
bimetallic strip645
bimetallic thermostat valve453
binary number system584
BITE (built-in test
equipment)488, 583, 584
blade attachment410
blade-element theory668
blade, or pitch angle668
blade shank668
blade station668
bleed air398, 485
bleeder resistor498
blended fuels467
blending537, 540
blisk423
blow-in doors396, 397
buckets408
BMEP (brake mean effective
pressure)30, 32, 572
Boeing 74710
Bon Ami249
boost188
boost pump297, 298, 307, 471, 481
boost venturi144
bootstrapping197
borescope141, 534, 540
bottle discharge button655
bottle transfer switch655
bottom (v.)721
Bourdon tube560
brake horsepower (BHP)28, 30, 39, 130
brake specific fuel consumption
(BSFC)41, 131
brake thermal efficiency (BTE)33
Brayton cycle380, 381
breaker points 208, 209, 210, 224, 227, 229
British thermal unit (Btu)130
brushes, on DC generators627
brushless alternator613
BSFC (brake specific fuel
consumption)41
bungee starters281
burner pressure480
burner pressure (Pb)478
burner-pressure sensor valve483
butterfly valve147
bypass engine377
bypass oil filters114
bypass ratio377, 409, 667
bypass valve112, 114

C
cabin heater310
calibrated hairspring568
cam-ground piston65
camshaft79, 80, 328, 334
can-annular combustors419
capacitance afterfiring243
capacitor208, 209, 210, 211, 212
capillary attraction156
capillary tube560
Caproni-Campini CC-2373
capsule-type instrument
mechanism561
carbon dioxide (CO₂)651, 652
carbon monoxide (CO) detectors ...265
carbon pile voltage regulator606
carbon-residue test101
carbon seals444
carbon track230
carburetor131, 133, 144, 475
deicing .. 735
demineralized water 537
density 364, 365, 366, 386
density altitude 699
density controller 196
depth-type filter 115
derichment jet 184
derichment valve 184
desalination washing 537
detergent oil 102
detonation
deviation pressure 366, 558, 559, 562
differential-pressure controller 196, 197
differential pressure indicator 574
diffuser 375, 395, 398, 399, 412, 413
dipstick 118, 455
direct compression check 304
direct fuel injection 142, 160
direct injection system 166
disassembly and cleaning
DC alternators 632
DC generators 622
disposable filtering element 115
distributed pole stator 609
distributor 208, 213, 226, 230, 236
distributor block 238
divergent ducts 394, 399, 401
divergent inlet duct 412
double magnetos 222
Douglas DC-3 10
Dow Corning DC-4 silicone grease 306
Dowty Rotol composite propeller blade 712
drag cup 568
droop 484
drum-type instruments 557
dry-sump engine 106
dry-sump lubrication system 54, 107, 118, 439
dual ignition 37
dual-spool gas-turbine engine 401, 406
duct heater 388
durability 44, 295
duty cycle 497
dwell chamber 442
dynamic dampers 73, 329, 335
dynamic pressure 559
dynamometer 30, 337

economizer systems 154
eddy current 568
edge filters 115
EEC (electronic engine control) ... 517, 522
effective pitch 669
E-gap .. 210, 223, 224, 226
EGT (exhaust gas temperature) ... 132, 134, 309, 531, 545, 567
EICAS (engine indication and crew alerting system) 454, 558, 583, 587, 588
elastic limit 426
electrical potential 596
electrical starters 506
electrical systems 595
electric starters 282, 509
electromagnet 600
electromagnetic radiation 233, 236
electromagnetic
reverse-current cutout relay 607
electronic engine controls
(EEC) .. 485, 487
electronic fuel injection 140, 143
electronic ignition systems 207
electronic imaging 534
electrons .. 596
electrostatic field 243
electrothermal propeller deicing system 736
emergency fuel control 484
energy .. 360
gasoline engine baffles 308
gasoline engine-driven air pump 309
gasoline engine fire 298
gasoline engine overhaul 348
gasoline engine pressure ratio (EPR) 385, 485
gasoline engine run-up 529
gasoline engine service manual 488
gasoline engine-start switch 500
gasoline engine trimming 546
gasoline epicyclic reduction gears 75
gasoline EP lubricant 103
gasoline EPR (engine pressure ratio) 485, 540, 564
EPR indicator .. 545
equalizing resistors 606
external combustion engine 3
extreme-pressure (EP) lubricants 95, 103

F
F-22 ... 523
FAA-certificated repair station 579
FAA Form 337 303
FADEC 486, 487, 488, 511, 541
explorers ... 367
false start ... 532
fan cowl ... 521
fan pressure ratio 408
feathering propellers 681, 687
feathering pump 688
feathering valve (FV)......................... 702
feedback ring 705, 708
field wires ... 211
feeler gages .. 327
fiber optics .. 534
field coils .. 625
finite tubing 472
filter ... 472
filter bypass warning light 455
fine-wire electrodes 240
fine-wire spark plugs 245, 250
finned mufflers 272
fire detection systems 644, 656
fire detection test lights 656
fire detector 645
fire-detector loop 657
fire extinguisher 298
fire-extinguishing agents 652, 657
fire-extinguishing systems 651, 657
fire point ... 100
fire protection system 654
fire-pull handle 654
fire shield .. 307
fire sleeve .. 171
firewall .. 310
fire-warning light 655
fire zones ... 644
firing order 50, 51, 52
fire-tree method 423
fixed-pitch propellers 676
fixed-pitch propellers 207
flame holders 522
flameout .. 495
flame tube ... 419, 495
flanged propeller shaft 718, 719, 720
flange-mounted magnetos 226
flashing the field 601
flashover .. 213
flash point ... 100, 438, 467
flat-rated engine 699
flat-rate limit 572
flexible hose 308
flexible-tube fiber-optic scopes 534, 535
flight engineer’s station 557
float carburetor 142, 143, 151, 155, 157, 160, 296
floating cam rings 90
flow divider 167, 168, 171, 179, 477
flowmeter .. 181
flowmeters for turbine engines 571

Index
fluid density .. 559
fluorescent penetrant 330
fluorescent penetrant inspection 324
flyweight governor 483
flyweight-type governor 681
FMC (flight management computer) 587
FOD (foreign object damage) 397, 540, 541
force .. 361
foreign object damage (FOD) 396, 540
four-cycle reciprocating engine 60
four-stroke-cycle engine 22
fractional distillation 129, 136
frangible ... 653
free turbine ... 376, 412
free-turbine blades 714
free-turbine engine 375, 696
free-turbine turboprop engine 704
Freon .. 652
friction ... 95
friction horsepower (FHP) 28, 30
fuel-air mixture unit 175, 178
fuel-air mixture 136, 166, 186, 188, 468, 495, 498, 509, 532
fuel-air mixture ratio 129, 134, 143, 145, 146
fuel control .. 406, 475, 476, 477, 478, 479, 480, 481, 483
fuel dye stain .. 307
fuel filter .. 453
fuel flow indicators 567
fuel flowmeter ... 173, 297, 561, 570
fuel flowmeter transmitter 475
fuel injection system 166, 187
fuel injector pump 176, 178
fuel manifold valve 175, 179
fuel nozzles ... 476, 539
fuel-oil heat exchanger 476
fuel pressure ... 477, 561
fuel pressure warning system 561
fuel pumps .. 472
fuel quantity gage 469
fuel selector valve 307
fuel strainer ... 307, 474
fuel temperature 564
full-authority digital electronic control (FADEC) 424, 485
full-flow oil filter 114

g gage pressure 366, 558, 559
Garrett TFE731 turbofan engine 412
Garrett TPE331 engine 431
gas generator ... 533, 697
gasoline ... 136, 143
gas turbine engine 360, 367, 368, 371, 374, 380, 385, 392, 418, 422, 429, 437, 506, 713
gas-turbine starter 510
general aviation .. 137
General Aviation Airworthiness Alerts 303
General Electric Company 9
General Electric I-A engine 374
generator .. 309
generator field connections 601
geometric pitch 668, 669
gerotor pump .. 112, 448
glass cockpit .. 583
Gloster E.28 .. 374
glow plug igniter 502, 504
governor ... 680
GPU (ground power unit) 343, 507, 530
graphite fibers ... 710
gravity ... 361
grit blasting .. 537
gross thrust ... 382
ground-adjustable propeller 677
ground-boosted engine 188
growler ... 623

H half-wave rectifier 498
halogenated hydrocarbon 652
Halon 1211 ... 652
Halon 1301 ... 652
Hamilton Standard Hydromatic feathering propeller 119, 687
hand-propping 281
Harrier .. 522, 523
Hartzell composite propeller blade 711
Hartzell steel-hub feathering propeller 689, 691
Hartzell steel-hub propeller 681, 700, 705
hazard areas .. 529, 530
hearing protector 530
heat cycle .. 426
heat engine ... 3, 367
heater muff}s ... 265
heat exchanger ... 472
heat range, spark plugs 244
Heinkel He 178 374
helical spring ... 285
Heli-Coil insert 59, 243, 328
hemoglobin .. 265
heptane .. 138
high-bypass engine 377
high-bypass ratio engine 667
high-bypass-ratio turbofan 395
high-pressure compressor 406
high-tension magneto ignition 209
high-tension transformer 214
high unmetered fuel pressure 177, 181
hopper .. 119
horizontally opposed engine 48, 50, 56, 57, 60, 68, 80, 82
horsepower ... 28, 362, 380, 572
horsepower, brake 28, 30
horsepower, friction 28, 30
horsepower, indicated 28
hot section392, 418, 462, 538
hot section inspection538
hot spot276
hot starts531, 532, 538
hot-tank lubricating system440
hot valve clearance90
hourmeter568
HRD fire extinguisher652, 655
hung start532, 538
hybrid compressor engine411
hybrid spark plug241
hydraulic fluid87
hydraulic lock87
hydraulic valve lifter80
hydromechanical fuel control479, 480, 484, 485, 488

induction vibrator218
induction air filter308
impulse coupling28
IMEP (indicated mean effective ignition system servicing440
ignition switch479
ignition harness tester238
ignition leads209, 211, 213, 236, 238, 252
ignition switch208, 210, 211, 218, 231, 232, 297, 298, 299
ignition system components496
ignition system servicing504
IMEP (indicated mean effective pressure)28
impulse coupling216, 228
impulse turbine blade424
Inconel649
indicated horsepower (IHP)28
induction air filter308
induction system131
inertia363
in-flight starter282
inlet guide vanes401, 411
in-line engine46, 49
inspection Authorization301
instrument range marking579, 580
intake valves326, 332
intercooler189
intercylinder baffles273
interference angle61, 62, 333
interference fit59, 62, 325
internal-combustion engine3, 4
International Civil Aviation Organization (ICAO)368
interpole603, 604
iridium241
iso-octane138

Jet A467, 468
Jet A-1467
Jet B467, 468
JetCal Analyzer/Trimmer545, 546
jet fuel467, 469
jet propulsion359, 371, 373, 375
jet reaction engines359
jeweler’s file537
joule495
JP-4467

K
Kelvin scale367
kerosine137, 467
Kevlar™710, 711
kilopascal558
kinematic viscosity99, 438

kinetic energy360, 363, 398
knuckle pin88
Koppers Aeromatic propeller680

L
labyrinth seals444, 445
Langley, Dr. Samuel3
laser tachometer569
last-chance oil filter452
law of conservation of energy360
Lawrance, Charles6
LCD (liquid crystal display)583
lead fouling240, 248
lean die-out480
lean mixture139
liaison aircraft48
Liberty engine5
Liberty V-1247
life-limited components303
Lindbergh, Charles6, 44
Lindberg pneumatic fire detection system650
line-bored78
line boring62, 328
link rod87
liquid cooling53, 271, 275
liquid nitrogen (N2)651, 652
loadmeter299
longitudinal magnetization322
low-bypass engine377
low-pressure compressor406
low-pressure warning light454
low-tension magneto213
low unmetered fuel pressure177, 181
LRU (line replaceable unit)488, 584
lubricating oils99
lubrication system servicing455
Lycoming XR-77556
M
Mach number486, 518
Magnesyn system571
magnetic circuit209
magnetic field209, 597, 598, 600, 602
magnetic particle
inspection319, 321, 323
magnetism596, 597
magneto207, 209, 210, 213, 216, 218, 222, 226, 237, 496
magneto check157, 220, 231, 299
magneto drop303
magneto ignition system207
magneto internal timing224, 229, 230, 307
magneto overhaul230
magneto safety check231
magneto timing light224, 227
main bearing inserts335
main metering system162
major alteration729
major overhaul314, 315
major repair164, 729
mandrel328, 724
manifold absolute pressure
(MAP)36, 563
manifold pressure163, 299, 571
manifold pressure gage158, 164, 557
Manly-Balzer engine5
Manly, Charles4
manual fuel valve (MFV)702
manufacturer’s service
bulletins244, 303
MAP (manifold absolute pressure)31, 562
mass ...361, 382
massive electrodes240
massive electrode spark plug249
master rod87, 88
master spline721
matrix710
matter360, 361
maximum fuel economy134
McCauley constant-speed feathering
propeller692
mean effective pressure (MEP)28
mechanical-blockage reverser520
mechanical efficiency35
mechanical energy398
mercury barometer558
metal fatigue425, 426
metallic-ash detergent oil102
metal propellers677, 727
methanol183
methyl chloride560
MFD (multifunction display)583
mica spark plugs241
microbes468
microcomputers583
microfilter474
micrometer caliper327
micrometer-type torque wrench542
microprocessors583
midspan shroud409
millimeter565
millibar558
mineral-base oil103
minor alteration729
minor repair729
mixture control134, 143, 178, 297, 298
mixture control system163, 170
module (modular engine
construction)532
momentum359, 362, 375, 382, 383, 384, 564, 667
momentum theory668
Moss, Dr. Sanford8
muffler258, 259, 260, 308
multiple-can combustors419
multiviscosity oil102
N
N1 ..406, 487
N2 ..406, 472
NACA cowling45, 273
NACA (National Advisory
Committee for Aeronautics)45, 273
naphtha248
NASA ..45
National Fire Protection Association
(NFPA)643
National Institute of Standards
and Technology (NIST)319, 542
naturally aspirated engine35, 186, 561, 563
negative torque sensing
(NTS) system703
negative torque sensor575
net thrust382, 386
neutral plane602, 603, 604
new-parts dimension325
new-parts limits314
Newton’s Laws of Motion363
Nichrome564
nitrided steel330, 331
nitriding58, 66, 72, 329
noise suppressors519
noncounterweight
propeller681, 683, 686
nondestructive inspection319
normal shock wave365, 397
notch sensitivity713
O
oblique shock wave365, 397
octane rating137, 138, 140
odometer568
ohmmeter625
oil analysis123, 305, 456
oil control ring68
oil cooler 107, 108, 116, 120, 275, 452
oil-damped bearings 443
oil dilution 119, 120
oil filter 306, 450, 451
oil filter bypass valve 450
oil filter systems 114
oil pressure 454
oil pressure gage 531, 557
oil pressure pumps 448
oil-pressure relief 113
oil pressure relief valve 108, 120, 449
oil quantity 455
oil separator 119
oil tanks 446
oil temperature 454, 564
oil temperature gage 557
oil-to-fuel heat exchanger 437, 452
on-condition maintenance 532, 533
100-hour inspection 301, 303
on-speed condition 685, 707
on-speed condition propeller 683
operating cycle 532
optoelectronic devices 557, 568, 583
Otto cycle 4, 22, 23, 71, 380
Otto, Dr. Nikolaus 4
overboost 192
overhaul manual 322, 325, 335
overrunning clutch 283, 284
overspeed condition, propeller 683
overspeed conditions 538, 541, 685, 707
overspeed governor 709
overtemperature operations 541
overvoltage protector 611
OX-5 engine 5
oxygen 265

P
paralleling switch 606
paralleling terminals 611
PCB (plenum chamber burning) ... 523
peak voltage 499
performance deterioration 540
performance number 137, 138
performance rating 140
performance-recovery washing ... 537
permanent magnet 600
PFA 55MB 468
P-factor 672
phase sequence 615
photo-tach 725, 726
pinion 560, 561
piston displacement 35
piston rings 66, 67, 326, 336
pistons 64, 71, 72
pitch distribution 711
pivotless breaker points 229
pi (π) filter 497
planetary gear train 75
planetary reduction gears 282, 430
P-lead 211, 219, 231, 232, 241, 307
plenum chamber 395, 400
POH (Pilot’s Operating Handbook) 296, 572
polar-inductor magneto 222
pole shoe 603
poppet valve 60, 61, 62
porous chrome plating 330
positive-displacement pump 448
post-inspection run-up 310
potential energy 360, 398
pour point 101, 438
power 10, 27, 28, 362
power-assurance check 533
power control 706
power enrichment system 154, 163, 170
Power Jets, Ltd. 9
power lever 697, 700, 702
power lever angle (PLA) 478
powerplant 301, 309, 311, 557
powerplant fire protection system 651
power recovery turbine 32, 262, 264
Pratt & Whitney of Canada
JT15D turbofan 439
PT6 10, 395, 421, 430, 447, 696, 704
PT6 turboprop 411
R-1830 10
R-4360 6, 47
preflight inspection 231, 536
preignition 38, 134, 326, 333
preinspection run-up 304
prepreg 711
preservative oil 97
pressure 366, 558
pressure altitude 38, 571, 572
pressure carburetor 160, 161, 187
pressure cooling 53, 273, 274
pressure-injection carburetor 142, 160, 166, 184, 185
pressure pump 107
pressure ratio 409
pressure-ratio controller 193, 195
pressure relief valve 112, 474, 481
pressure rise per stage 403
pressure subsystem 442
pressure waves 365
pressurizing valve 453
prevailing torque 542
primary air 419
primary electrical circuit 210
Prist 468
profile tip 411
profilometer 58, 331
projecting electrodes 241
secondary air .. 419
sector gear .. 560, 561
self-accelerating speed 532
self-sustaining speed 507
semiconductor 503
semiconductor diodes 609
semiconductor rectifiers 599
semiconductor transducer 583
semisynthetic oil 103
series-wound motor 282
serviceable limits 314, 316, 317, 325
service bulletins 156, 315, 319
service letters 315, 319
servo regulator 172
servo system 480
servo valve ... 168, 169
shaft horsepower 388
shear section 473, 507
shielding .. 233, 237, 241, 504
shingling .. 541
shock wave ... 134, 136, 518
shop work order 303, 315
Shower of Sparks ignition system 218, 287
shrouded turbine blades 424
shunt-wound generators 603
single-entry centrifugal compressor 399
single-shaft turbine engine 696
skin radiator .. 271
sleeve valves 60
slip .. 669
slip mark ... 579
slip ring .. 598
slipstream .. 299
slow-blow fuse 604
sludge .. 96, 101, 102, 103, 329, 330
sludge plugs .. 319, 329
slug ... 361
SMOH (since major overhaul) 315
snubber ... 409, 540
SOAP (spectrometric oil analysis program) .. 456
solid-fuel rockets 360
solid-state inverters 615
solid-state transducers 557
sound suppressor 519
spark igniters 502
spark plug ... 208, 209, 213, 237, 239, 244, 307
spark plug bomb tester 250
spark plug gapping 249
spark plug leads 241
spark plug reach 243
spark plug servicing 247, 249
specific fuel consumption 40, 131, 407
specific gravity adjustment 488
specific weight 45
spectrometric analysis 533
spectrometric oil analysis program 123
speed ... 362
speed of sound 368, 422, 507, 670
speed, or condition, lever 697
speed ring .. 272
Spirit of St. Louis 6
spline ... 718
splined propeller shaft 721
sprag clutch 507
springback ... 158
spring-loaded bypass valve 472
spur-gear pump 111, 448
“square” engines 35
squealer tips 411
squeeze film bearings 443
squib ... 653
SSU viscosity 99, 100
stage length 713
staggered ignition timing 227
standard atmospheric conditions 368
standard day conditions 533, 545, 558
Standard J-1 6
starter-generator 509, 611
starter relay .. 309, 500
starter solenoids 287
starters with Bendix drive 284
starters with overrunning clutch 283
starters with right-angle drive adapter 285
start-lock pin 700
static electricity 469, 596
static flux ... 211
static pressure 365, 366, 559
static RPM .. 299, 303
static temperature 367
stator ... 633
stator vanes 401, 403, 410, 411
stator windings 609
steam cooling 271
stellite .. 61
stepping motor 734
Stoddard solvent 248, 318
stoichiometric mixture 129, 132
storage capacitor 500
straight mineral oil 101
straight-run gasoline 136
strainer .. 112, 114
stratosphere 368, 386
stress-rupture cracks 539
stroboscopic or laser tachometer 568
stroboscopic tachometer 569
SU-35 .. 523
subsonic flow 364
subsonic inlet duct 394
sump ... 106, 107, 109, 468
supercarged engine 186
supercharger 26, 90, 134, 188, 189
supersonic flow 365
Systron-Donner pneumatic fire detection system

Table of Contents

- Supersonic inlet ducts 396
- Supersonic speed .. 518
- Supplemental Type Certificate (STC) 139
- Surface filtration .. 115
- Surface plate ... 328
- Surge ... 480
- Synchronous motor ... 569
- Synchrophasing system 734
- Synchrosopes ... 570
- Synthetic oil ... 103, 438
- Systematic troubleshooting 343
- T
 - Table of limits ... 316, 317
 - Tachometer ... 531, 557, 562, 567, 568, 569, 570, 581
 - Tail pipe .. 517, 518
 - Tapered propeller shaft 722
 - Tappet ... 89
 - Tappet bodies ... 334, 335, 336
 - Taylor, Charles .. 4
 - TBO (time between overhauls) 44, 45, 295, 314, 374
 - TCM fuel injection system 175, 177
 - Telescoping gage .. 327
 - TEL (tetraethyl lead) 140, 468
 - Temperature .. 386, 564
 - Temperature distribution, turbine engine 462
 - Test club .. 337
 - Testing
 - DC alternator output 637
 - DC generator output 630
 - Tetraethyl lead (TEL) 136
 - Thermal efficiency 32, 33, 130, 131, 479
 - Thermistor ... 649
 - Thermocouple ... 132, 567, 647
 - Thermocouple fire sensor 648
 - Thermocouple instruments 565
 - Thermocouple sensor 657
 - Thermocouple-type instruments 581
 - Thermosetting resin 710
 - Thermostatic valve 108, 113, 117
 - Thermostat valve 645
 - Three-dimensional cam 480
 - Throttle .. 297, 298
 - Throttle control ... 475
 - Throttle lever .. 485
 - Throttle lever angle 486
 - Throttle valve ... 481, 482, 483, 484
 - Thrust .. 39, 359, 371, 380, 383, 386, 422, 423, 517, 518, 667, 668, 672
 - Thrust bending force 670
 - Thrust horsepower 10, 388, 670
 - Thrust reversers 519, 521
 - Thrust specific fuel consumption (TSFC) 11
 - Thrust vector control system 523
 - Time between overhauls (TBO) 44, 45, 57
 - Time-Rite indicator 226
 - TIT limitations .. 485
 - TIT (turbine inlet temperature) 425, 699
 - Top overhaul ... 314
 - Torque .. 30, 380, 423, 572, 573, 575
 - Torque bending force 671
 - Torquemeter ... 30, 567, 571, 572, 575
 - Torquemeter oil pressure 710
 - Torque sensor .. 573, 574
 - Torque wrenches .. 306, 541, 543
 - Torsional vibration 73, 76
 - Total air temperature 486
 - Total energy .. 364
 - Total pressure ... 366, 559
 - Total temperature 367
 - Townend ring ... 272, 273
 - Track ... 723
 - Tractor propeller .. 672, 714
 - Transformer ... 615
 - Transformer-rectifier (TR) 611
 - Transonic range ... 670
 - Trend monitoring .. 533, 539
 - Trichloroethylene .. 324
 - Triethyl phosphate (TCP) 138
 - Troubleshooting .. 343, 346, 347
 - True power (electrical) 614
 - TSFC (thrust specific fuel consumption) 11
 - Turbine .. 373, 422, 423
 - Turbine engine cooling systems 461
 - Turbine engine exhaust 517
 - Turbine engine fuel 140
 - Turbine engine fuel control 478
 - Turbine engine fuel system 471, 472
 - Turbine-engine igniters 502
 - Turbine engine ignition systems 495
 - Turbine engine maintenance 532
 - Turbine engine operation 529
 - Turbine engine testing 545
 - Turbine engine troubleshooting 547
 - Turbine inlet guide vanes 422, 425, 462, 699
 - Turbine inlet temperature (TIT) 387, 424, 478, 567
 - Turbine nozzle .. 423
 - Turbocharger .. 101, 177, 178, 189, 191, 258, 262, 308, 562
 - Turbocharger intercooler 275
 - Turbofan engine ... 377, 384, 388, 393, 405, 407, 519, 667, 696, 713
 - Turbojet .. 373
 - Turbojet engine ... 375, 377, 488, 519, 667, 713
 - Turboprop .. 375
 - Turboprop engine .. 376, 395, 696
 - Turboshaft engine 376

876
turbosuperchargers 8, 9, 32, 189, 258, 373
two-position propeller 680
two-stroke-cycle engine 22, 25
Type Certificate Data Sheets 579

U
UDF engine (Unducted Fan™) 713
UHB engine 11, 378, 713, 714
under-frequency protection 612
underspeed condition 685
underspeed condition, propeller 683
underspeed governor (USG) 701
Unducted Fan™ engine 11, 378
Unducted Fan™ propellers 673
unidirectional fibers 711
universal propeller protractor 677
upper-deck air pressure 178
upper-deck pressure 562

V
valve grinding machine 333
valve guide 62, 334
valve lash 34
valve lifters 89
valve overlap 24, 25, 34
valve reconditioning 332
valve seat 62, 332, 334
valve springs 326, 336
vane-type flowmeter 570
vane-type pumps 448
vaporizing nozzles 476
vapor lock 137
vapor pressure 137, 468, 564
variable absolute pressure controller (VAPC) 193
variable-angle stators 404
variable guide vanes 404
variable inlet duct 397
variable-orifice mixture control 152
variable stator vane control 485
varsol 248, 318, 319
vectored thrust engines 522, 523
velocity 362, 363
velocity turbine 264
V-engine 47, 49
vent subsystem 442, 453
venturi 143, 144, 147, 148, 150, 168
vernier coupling 227
vernier scale 678
vertical tape instrument 557
vibrating-type voltage regulator 607
vibration loop 171, 180
vibration sensing unit 725
video imaging system 536
videoscopes 540
VIFF (vectoring in forward flight) 523
viscosity 96, 99, 100, 437, 438, 468
viscosity index 100, 102, 438
viscosity index improver 102
visual inspection 319, 320
volatile memory 584
volatility 468
voltage 600, 601
voltage-doubler circuit 499
voltage regulator 510, 600, 601, 606, 609, 610, 611, 613
voltmeters 569
volumetric efficiency 25, 34, 35, 188
von Ohain, Dr. Hans Pabst 374
vortex dissipater 396
Voyager engines 56

W
wafer screen filter 474
wake 529
walk-around inspection 653
Wankel, Felix 7
waste gate 191, 193
waste-gate valve 192
water-cooled engines 275
water injection 387
watt 28
weight 361, 382
wet-sump engine 106, 118
wet-sump lubrication system 108, 439
wet-sump systems 54
wet-type vacuum pump 108
Whittle, Sir Frank 9, 374
wide-cut fuel 467
windmilling propeller 689
wood propellers 676, 727
work 27, 362
worm gear 568
worm-gear 285
wound-rotor magneto 222
Wright
Flyer 4, 667, 676
J-5 engine 6, 44
J-5 Whirlwind engine 272
K6-5 44
R-3350 engine 264, 272
Wilbur and Orville 4
Wright Aeronautical Corporation 5, 9
wrist pin 65, 66, 336

Z
zero-lash valve lifter 80, 81